1 | // Copyright 2014 The Flutter Authors. All rights reserved. |
---|---|
2 | // Use of this source code is governed by a BSD-style license that can be |
3 | // found in the LICENSE file. |
4 | |
5 | /// @docImport 'package:flutter/widgets.dart'; |
6 | /// |
7 | /// @docImport 'image.dart'; |
8 | /// @docImport 'paragraph.dart'; |
9 | /// @docImport 'proxy_box.dart'; |
10 | /// @docImport 'shifted_box.dart'; |
11 | /// @docImport 'sliver.dart'; |
12 | /// @docImport 'viewport.dart'; |
13 | library; |
14 | |
15 | import 'dart:math' as math; |
16 | import 'dart:ui' as ui show ViewConstraints, lerpDouble; |
17 | |
18 | import 'package:flutter/foundation.dart'; |
19 | import 'package:flutter/gestures.dart'; |
20 | |
21 | import 'package:vector_math/vector_math_64.dart'; |
22 | |
23 | import 'debug.dart'; |
24 | import 'object.dart'; |
25 | |
26 | // Examples can assume: |
27 | // abstract class RenderBar extends RenderBox { } |
28 | // late RenderBox firstChild; |
29 | // void markNeedsLayout() { } |
30 | |
31 | // This class should only be used in debug builds. |
32 | class _DebugSize extends Size { |
33 | _DebugSize(super.source, this._owner, this._canBeUsedByParent) : super.copy(); |
34 | final RenderBox _owner; |
35 | final bool _canBeUsedByParent; |
36 | } |
37 | |
38 | /// Immutable layout constraints for [RenderBox] layout. |
39 | /// |
40 | /// A [Size] respects a [BoxConstraints] if, and only if, all of the following |
41 | /// relations hold: |
42 | /// |
43 | /// * [minWidth] <= [Size.width] <= [maxWidth] |
44 | /// * [minHeight] <= [Size.height] <= [maxHeight] |
45 | /// |
46 | /// The constraints themselves must satisfy these relations: |
47 | /// |
48 | /// * 0.0 <= [minWidth] <= [maxWidth] <= [double.infinity] |
49 | /// * 0.0 <= [minHeight] <= [maxHeight] <= [double.infinity] |
50 | /// |
51 | /// [double.infinity] is a legal value for each constraint. |
52 | /// |
53 | /// ## The box layout model |
54 | /// |
55 | /// Render objects in the Flutter framework are laid out by a one-pass layout |
56 | /// model which walks down the render tree passing constraints, then walks back |
57 | /// up the render tree passing concrete geometry. |
58 | /// |
59 | /// For boxes, the constraints are [BoxConstraints], which, as described herein, |
60 | /// consist of four numbers: a minimum width [minWidth], a maximum width |
61 | /// [maxWidth], a minimum height [minHeight], and a maximum height [maxHeight]. |
62 | /// |
63 | /// The geometry for boxes consists of a [Size], which must satisfy the |
64 | /// constraints described above. |
65 | /// |
66 | /// Each [RenderBox] (the objects that provide the layout models for box |
67 | /// widgets) receives [BoxConstraints] from its parent, then lays out each of |
68 | /// its children, then picks a [Size] that satisfies the [BoxConstraints]. |
69 | /// |
70 | /// Render objects position their children independently of laying them out. |
71 | /// Frequently, the parent will use the children's sizes to determine their |
72 | /// position. A child does not know its position and will not necessarily be |
73 | /// laid out again, or repainted, if its position changes. |
74 | /// |
75 | /// ## Terminology |
76 | /// |
77 | /// When the minimum constraints and the maximum constraint in an axis are the |
78 | /// same, that axis is _tightly_ constrained. See: [ |
79 | /// BoxConstraints.tightFor], [BoxConstraints.tightForFinite], [tighten], |
80 | /// [hasTightWidth], [hasTightHeight], [isTight]. |
81 | /// |
82 | /// An axis with a minimum constraint of 0.0 is _loose_ (regardless of the |
83 | /// maximum constraint; if it is also 0.0, then the axis is simultaneously tight |
84 | /// and loose!). See: [BoxConstraints.loose], [loosen]. |
85 | /// |
86 | /// An axis whose maximum constraint is not infinite is _bounded_. See: |
87 | /// [hasBoundedWidth], [hasBoundedHeight]. |
88 | /// |
89 | /// An axis whose maximum constraint is infinite is _unbounded_. An axis is |
90 | /// _expanding_ if it is tightly infinite (its minimum and maximum constraints |
91 | /// are both infinite). See: [BoxConstraints.expand]. |
92 | /// |
93 | /// An axis whose _minimum_ constraint is infinite is just said to be _infinite_ |
94 | /// (since by definition the maximum constraint must also be infinite in that |
95 | /// case). See: [hasInfiniteWidth], [hasInfiniteHeight]. |
96 | /// |
97 | /// A size is _constrained_ when it satisfies a [BoxConstraints] description. |
98 | /// See: [constrain], [constrainWidth], [constrainHeight], |
99 | /// [constrainDimensions], [constrainSizeAndAttemptToPreserveAspectRatio], |
100 | /// [isSatisfiedBy]. |
101 | class BoxConstraints extends Constraints { |
102 | /// Creates box constraints with the given constraints. |
103 | const BoxConstraints({ |
104 | this.minWidth = 0.0, |
105 | this.maxWidth = double.infinity, |
106 | this.minHeight = 0.0, |
107 | this.maxHeight = double.infinity, |
108 | }); |
109 | |
110 | /// Creates box constraints that is respected only by the given size. |
111 | BoxConstraints.tight(Size size) |
112 | : minWidth = size.width, |
113 | maxWidth = size.width, |
114 | minHeight = size.height, |
115 | maxHeight = size.height; |
116 | |
117 | /// Creates box constraints that require the given width or height. |
118 | /// |
119 | /// See also: |
120 | /// |
121 | /// * [BoxConstraints.tightForFinite], which is similar but instead of |
122 | /// being tight if the value is non-null, is tight if the value is not |
123 | /// infinite. |
124 | const BoxConstraints.tightFor({double? width, double? height}) |
125 | : minWidth = width ?? 0.0, |
126 | maxWidth = width ?? double.infinity, |
127 | minHeight = height ?? 0.0, |
128 | maxHeight = height ?? double.infinity; |
129 | |
130 | /// Creates box constraints that require the given width or height, except if |
131 | /// they are infinite. |
132 | /// |
133 | /// See also: |
134 | /// |
135 | /// * [BoxConstraints.tightFor], which is similar but instead of being |
136 | /// tight if the value is not infinite, is tight if the value is non-null. |
137 | const BoxConstraints.tightForFinite({ |
138 | double width = double.infinity, |
139 | double height = double.infinity, |
140 | }) : minWidth = width != double.infinity ? width : 0.0, |
141 | maxWidth = width != double.infinity ? width : double.infinity, |
142 | minHeight = height != double.infinity ? height : 0.0, |
143 | maxHeight = height != double.infinity ? height : double.infinity; |
144 | |
145 | /// Creates box constraints that forbid sizes larger than the given size. |
146 | BoxConstraints.loose(Size size) |
147 | : minWidth = 0.0, |
148 | maxWidth = size.width, |
149 | minHeight = 0.0, |
150 | maxHeight = size.height; |
151 | |
152 | /// Creates box constraints that expand to fill another box constraints. |
153 | /// |
154 | /// If width or height is given, the constraints will require exactly the |
155 | /// given value in the given dimension. |
156 | const BoxConstraints.expand({double? width, double? height}) |
157 | : minWidth = width ?? double.infinity, |
158 | maxWidth = width ?? double.infinity, |
159 | minHeight = height ?? double.infinity, |
160 | maxHeight = height ?? double.infinity; |
161 | |
162 | /// Creates box constraints that match the given view constraints. |
163 | BoxConstraints.fromViewConstraints(ui.ViewConstraints constraints) |
164 | : minWidth = constraints.minWidth, |
165 | maxWidth = constraints.maxWidth, |
166 | minHeight = constraints.minHeight, |
167 | maxHeight = constraints.maxHeight; |
168 | |
169 | /// The minimum width that satisfies the constraints. |
170 | final double minWidth; |
171 | |
172 | /// The maximum width that satisfies the constraints. |
173 | /// |
174 | /// Might be [double.infinity]. |
175 | final double maxWidth; |
176 | |
177 | /// The minimum height that satisfies the constraints. |
178 | final double minHeight; |
179 | |
180 | /// The maximum height that satisfies the constraints. |
181 | /// |
182 | /// Might be [double.infinity]. |
183 | final double maxHeight; |
184 | |
185 | /// Creates a copy of this box constraints but with the given fields replaced with the new values. |
186 | BoxConstraints copyWith({ |
187 | double? minWidth, |
188 | double? maxWidth, |
189 | double? minHeight, |
190 | double? maxHeight, |
191 | }) { |
192 | return BoxConstraints( |
193 | minWidth: minWidth ?? this.minWidth, |
194 | maxWidth: maxWidth ?? this.maxWidth, |
195 | minHeight: minHeight ?? this.minHeight, |
196 | maxHeight: maxHeight ?? this.maxHeight, |
197 | ); |
198 | } |
199 | |
200 | /// Returns new box constraints that are smaller by the given edge dimensions. |
201 | BoxConstraints deflate(EdgeInsetsGeometry edges) { |
202 | assert(debugAssertIsValid()); |
203 | final double horizontal = edges.horizontal; |
204 | final double vertical = edges.vertical; |
205 | final double deflatedMinWidth = math.max(0.0, minWidth - horizontal); |
206 | final double deflatedMinHeight = math.max(0.0, minHeight - vertical); |
207 | return BoxConstraints( |
208 | minWidth: deflatedMinWidth, |
209 | maxWidth: math.max(deflatedMinWidth, maxWidth - horizontal), |
210 | minHeight: deflatedMinHeight, |
211 | maxHeight: math.max(deflatedMinHeight, maxHeight - vertical), |
212 | ); |
213 | } |
214 | |
215 | /// Returns new box constraints that remove the minimum width and height requirements. |
216 | BoxConstraints loosen() { |
217 | assert(debugAssertIsValid()); |
218 | return BoxConstraints(maxWidth: maxWidth, maxHeight: maxHeight); |
219 | } |
220 | |
221 | /// Returns new box constraints that respect the given constraints while being |
222 | /// as close as possible to the original constraints. |
223 | BoxConstraints enforce(BoxConstraints constraints) { |
224 | return BoxConstraints( |
225 | minWidth: clampDouble(minWidth, constraints.minWidth, constraints.maxWidth), |
226 | maxWidth: clampDouble(maxWidth, constraints.minWidth, constraints.maxWidth), |
227 | minHeight: clampDouble(minHeight, constraints.minHeight, constraints.maxHeight), |
228 | maxHeight: clampDouble(maxHeight, constraints.minHeight, constraints.maxHeight), |
229 | ); |
230 | } |
231 | |
232 | /// Returns new box constraints with a tight width and/or height as close to |
233 | /// the given width and height as possible while still respecting the original |
234 | /// box constraints. |
235 | BoxConstraints tighten({double? width, double? height}) { |
236 | return BoxConstraints( |
237 | minWidth: width == null ? minWidth : clampDouble(width, minWidth, maxWidth), |
238 | maxWidth: width == null ? maxWidth : clampDouble(width, minWidth, maxWidth), |
239 | minHeight: height == null ? minHeight : clampDouble(height, minHeight, maxHeight), |
240 | maxHeight: height == null ? maxHeight : clampDouble(height, minHeight, maxHeight), |
241 | ); |
242 | } |
243 | |
244 | /// A box constraints with the width and height constraints flipped. |
245 | BoxConstraints get flipped { |
246 | return BoxConstraints( |
247 | minWidth: minHeight, |
248 | maxWidth: maxHeight, |
249 | minHeight: minWidth, |
250 | maxHeight: maxWidth, |
251 | ); |
252 | } |
253 | |
254 | /// Returns box constraints with the same width constraints but with |
255 | /// unconstrained height. |
256 | BoxConstraints widthConstraints() => BoxConstraints(minWidth: minWidth, maxWidth: maxWidth); |
257 | |
258 | /// Returns box constraints with the same height constraints but with |
259 | /// unconstrained width. |
260 | BoxConstraints heightConstraints() => BoxConstraints(minHeight: minHeight, maxHeight: maxHeight); |
261 | |
262 | /// Returns the width that both satisfies the constraints and is as close as |
263 | /// possible to the given width. |
264 | double constrainWidth([double width = double.infinity]) { |
265 | assert(debugAssertIsValid()); |
266 | return clampDouble(width, minWidth, maxWidth); |
267 | } |
268 | |
269 | /// Returns the height that both satisfies the constraints and is as close as |
270 | /// possible to the given height. |
271 | double constrainHeight([double height = double.infinity]) { |
272 | assert(debugAssertIsValid()); |
273 | return clampDouble(height, minHeight, maxHeight); |
274 | } |
275 | |
276 | Size _debugPropagateDebugSize(Size size, Size result) { |
277 | assert(() { |
278 | if (size is _DebugSize) { |
279 | result = _DebugSize(result, size._owner, size._canBeUsedByParent); |
280 | } |
281 | return true; |
282 | }()); |
283 | return result; |
284 | } |
285 | |
286 | /// Returns the size that both satisfies the constraints and is as close as |
287 | /// possible to the given size. |
288 | /// |
289 | /// See also: |
290 | /// |
291 | /// * [constrainDimensions], which applies the same algorithm to |
292 | /// separately provided widths and heights. |
293 | Size constrain(Size size) { |
294 | Size result = Size(constrainWidth(size.width), constrainHeight(size.height)); |
295 | assert(() { |
296 | result = _debugPropagateDebugSize(size, result); |
297 | return true; |
298 | }()); |
299 | return result; |
300 | } |
301 | |
302 | /// Returns the size that both satisfies the constraints and is as close as |
303 | /// possible to the given width and height. |
304 | /// |
305 | /// When you already have a [Size], prefer [constrain], which applies the same |
306 | /// algorithm to a [Size] directly. |
307 | Size constrainDimensions(double width, double height) { |
308 | return Size(constrainWidth(width), constrainHeight(height)); |
309 | } |
310 | |
311 | /// Returns a size that attempts to meet the following conditions, in order: |
312 | /// |
313 | /// * The size must satisfy these constraints. |
314 | /// * The aspect ratio of the returned size matches the aspect ratio of the |
315 | /// given size. |
316 | /// * The returned size is as big as possible while still being equal to or |
317 | /// smaller than the given size. |
318 | Size constrainSizeAndAttemptToPreserveAspectRatio(Size size) { |
319 | if (isTight) { |
320 | Size result = smallest; |
321 | assert(() { |
322 | result = _debugPropagateDebugSize(size, result); |
323 | return true; |
324 | }()); |
325 | return result; |
326 | } |
327 | |
328 | if (size.isEmpty) { |
329 | return constrain(size); |
330 | } |
331 | |
332 | double width = size.width; |
333 | double height = size.height; |
334 | final double aspectRatio = width / height; |
335 | |
336 | if (width > maxWidth) { |
337 | width = maxWidth; |
338 | height = width / aspectRatio; |
339 | } |
340 | |
341 | if (height > maxHeight) { |
342 | height = maxHeight; |
343 | width = height * aspectRatio; |
344 | } |
345 | |
346 | if (width < minWidth) { |
347 | width = minWidth; |
348 | height = width / aspectRatio; |
349 | } |
350 | |
351 | if (height < minHeight) { |
352 | height = minHeight; |
353 | width = height * aspectRatio; |
354 | } |
355 | |
356 | Size result = Size(constrainWidth(width), constrainHeight(height)); |
357 | assert(() { |
358 | result = _debugPropagateDebugSize(size, result); |
359 | return true; |
360 | }()); |
361 | return result; |
362 | } |
363 | |
364 | /// The biggest size that satisfies the constraints. |
365 | Size get biggest => Size(constrainWidth(), constrainHeight()); |
366 | |
367 | /// The smallest size that satisfies the constraints. |
368 | Size get smallest => Size(constrainWidth(0.0), constrainHeight(0.0)); |
369 | |
370 | /// Whether there is exactly one width value that satisfies the constraints. |
371 | bool get hasTightWidth => minWidth >= maxWidth; |
372 | |
373 | /// Whether there is exactly one height value that satisfies the constraints. |
374 | bool get hasTightHeight => minHeight >= maxHeight; |
375 | |
376 | /// Whether there is exactly one size that satisfies the constraints. |
377 | @override |
378 | bool get isTight => hasTightWidth && hasTightHeight; |
379 | |
380 | /// Whether there is an upper bound on the maximum width. |
381 | /// |
382 | /// See also: |
383 | /// |
384 | /// * [hasBoundedHeight], the equivalent for the vertical axis. |
385 | /// * [hasInfiniteWidth], which describes whether the minimum width |
386 | /// constraint is infinite. |
387 | bool get hasBoundedWidth => maxWidth < double.infinity; |
388 | |
389 | /// Whether there is an upper bound on the maximum height. |
390 | /// |
391 | /// See also: |
392 | /// |
393 | /// * [hasBoundedWidth], the equivalent for the horizontal axis. |
394 | /// * [hasInfiniteHeight], which describes whether the minimum height |
395 | /// constraint is infinite. |
396 | bool get hasBoundedHeight => maxHeight < double.infinity; |
397 | |
398 | /// Whether the width constraint is infinite. |
399 | /// |
400 | /// Such a constraint is used to indicate that a box should grow as large as |
401 | /// some other constraint (in this case, horizontally). If constraints are |
402 | /// infinite, then they must have other (non-infinite) constraints [enforce]d |
403 | /// upon them, or must be [tighten]ed, before they can be used to derive a |
404 | /// [Size] for a [RenderBox.size]. |
405 | /// |
406 | /// See also: |
407 | /// |
408 | /// * [hasInfiniteHeight], the equivalent for the vertical axis. |
409 | /// * [hasBoundedWidth], which describes whether the maximum width |
410 | /// constraint is finite. |
411 | bool get hasInfiniteWidth => minWidth >= double.infinity; |
412 | |
413 | /// Whether the height constraint is infinite. |
414 | /// |
415 | /// Such a constraint is used to indicate that a box should grow as large as |
416 | /// some other constraint (in this case, vertically). If constraints are |
417 | /// infinite, then they must have other (non-infinite) constraints [enforce]d |
418 | /// upon them, or must be [tighten]ed, before they can be used to derive a |
419 | /// [Size] for a [RenderBox.size]. |
420 | /// |
421 | /// See also: |
422 | /// |
423 | /// * [hasInfiniteWidth], the equivalent for the horizontal axis. |
424 | /// * [hasBoundedHeight], which describes whether the maximum height |
425 | /// constraint is finite. |
426 | bool get hasInfiniteHeight => minHeight >= double.infinity; |
427 | |
428 | /// Whether the given size satisfies the constraints. |
429 | bool isSatisfiedBy(Size size) { |
430 | assert(debugAssertIsValid()); |
431 | return (minWidth <= size.width) && |
432 | (size.width <= maxWidth) && |
433 | (minHeight <= size.height) && |
434 | (size.height <= maxHeight); |
435 | } |
436 | |
437 | /// Scales each constraint parameter by the given factor. |
438 | BoxConstraints operator *(double factor) { |
439 | return BoxConstraints( |
440 | minWidth: minWidth * factor, |
441 | maxWidth: maxWidth * factor, |
442 | minHeight: minHeight * factor, |
443 | maxHeight: maxHeight * factor, |
444 | ); |
445 | } |
446 | |
447 | /// Scales each constraint parameter by the inverse of the given factor. |
448 | BoxConstraints operator /(double factor) { |
449 | return BoxConstraints( |
450 | minWidth: minWidth / factor, |
451 | maxWidth: maxWidth / factor, |
452 | minHeight: minHeight / factor, |
453 | maxHeight: maxHeight / factor, |
454 | ); |
455 | } |
456 | |
457 | /// Scales each constraint parameter by the inverse of the given factor, rounded to the nearest integer. |
458 | BoxConstraints operator ~/(double factor) { |
459 | return BoxConstraints( |
460 | minWidth: (minWidth ~/ factor).toDouble(), |
461 | maxWidth: (maxWidth ~/ factor).toDouble(), |
462 | minHeight: (minHeight ~/ factor).toDouble(), |
463 | maxHeight: (maxHeight ~/ factor).toDouble(), |
464 | ); |
465 | } |
466 | |
467 | /// Computes the remainder of each constraint parameter by the given value. |
468 | BoxConstraints operator %(double value) { |
469 | return BoxConstraints( |
470 | minWidth: minWidth % value, |
471 | maxWidth: maxWidth % value, |
472 | minHeight: minHeight % value, |
473 | maxHeight: maxHeight % value, |
474 | ); |
475 | } |
476 | |
477 | /// Linearly interpolate between two BoxConstraints. |
478 | /// |
479 | /// If either is null, this function interpolates from a [BoxConstraints] |
480 | /// object whose fields are all set to 0.0. |
481 | /// |
482 | /// {@macro dart.ui.shadow.lerp} |
483 | static BoxConstraints? lerp(BoxConstraints? a, BoxConstraints? b, double t) { |
484 | if (identical(a, b)) { |
485 | return a; |
486 | } |
487 | if (a == null) { |
488 | return b! * t; |
489 | } |
490 | if (b == null) { |
491 | return a * (1.0 - t); |
492 | } |
493 | assert(a.debugAssertIsValid()); |
494 | assert(b.debugAssertIsValid()); |
495 | assert( |
496 | (a.minWidth.isFinite && b.minWidth.isFinite) || |
497 | (a.minWidth == double.infinity && b.minWidth == double.infinity), |
498 | 'Cannot interpolate between finite constraints and unbounded constraints.', |
499 | ); |
500 | assert( |
501 | (a.maxWidth.isFinite && b.maxWidth.isFinite) || |
502 | (a.maxWidth == double.infinity && b.maxWidth == double.infinity), |
503 | 'Cannot interpolate between finite constraints and unbounded constraints.', |
504 | ); |
505 | assert( |
506 | (a.minHeight.isFinite && b.minHeight.isFinite) || |
507 | (a.minHeight == double.infinity && b.minHeight == double.infinity), |
508 | 'Cannot interpolate between finite constraints and unbounded constraints.', |
509 | ); |
510 | assert( |
511 | (a.maxHeight.isFinite && b.maxHeight.isFinite) || |
512 | (a.maxHeight == double.infinity && b.maxHeight == double.infinity), |
513 | 'Cannot interpolate between finite constraints and unbounded constraints.', |
514 | ); |
515 | return BoxConstraints( |
516 | minWidth: a.minWidth.isFinite ? ui.lerpDouble(a.minWidth, b.minWidth, t)! : double.infinity, |
517 | maxWidth: a.maxWidth.isFinite ? ui.lerpDouble(a.maxWidth, b.maxWidth, t)! : double.infinity, |
518 | minHeight: |
519 | a.minHeight.isFinite ? ui.lerpDouble(a.minHeight, b.minHeight, t)! : double.infinity, |
520 | maxHeight: |
521 | a.maxHeight.isFinite ? ui.lerpDouble(a.maxHeight, b.maxHeight, t)! : double.infinity, |
522 | ); |
523 | } |
524 | |
525 | /// Returns whether the object's constraints are normalized. |
526 | /// Constraints are normalized if the minimums are less than or |
527 | /// equal to the corresponding maximums. |
528 | /// |
529 | /// For example, a BoxConstraints object with a minWidth of 100.0 |
530 | /// and a maxWidth of 90.0 is not normalized. |
531 | /// |
532 | /// Most of the APIs on BoxConstraints expect the constraints to be |
533 | /// normalized and have undefined behavior when they are not. In |
534 | /// debug mode, many of these APIs will assert if the constraints |
535 | /// are not normalized. |
536 | @override |
537 | bool get isNormalized { |
538 | return minWidth >= 0.0 && minWidth <= maxWidth && minHeight >= 0.0 && minHeight <= maxHeight; |
539 | } |
540 | |
541 | @override |
542 | bool debugAssertIsValid({ |
543 | bool isAppliedConstraint = false, |
544 | InformationCollector? informationCollector, |
545 | }) { |
546 | assert(() { |
547 | void throwError(DiagnosticsNode message) { |
548 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
549 | message, |
550 | if (informationCollector != null) ...informationCollector(), |
551 | DiagnosticsProperty<BoxConstraints>( |
552 | 'The offending constraints were', |
553 | this, |
554 | style: DiagnosticsTreeStyle.errorProperty, |
555 | ), |
556 | ]); |
557 | } |
558 | |
559 | if (minWidth.isNaN || maxWidth.isNaN || minHeight.isNaN || maxHeight.isNaN) { |
560 | final List<String> affectedFieldsList = <String>[ |
561 | if (minWidth.isNaN) 'minWidth', |
562 | if (maxWidth.isNaN) 'maxWidth', |
563 | if (minHeight.isNaN) 'minHeight', |
564 | if (maxHeight.isNaN) 'maxHeight', |
565 | ]; |
566 | assert(affectedFieldsList.isNotEmpty); |
567 | if (affectedFieldsList.length > 1) { |
568 | affectedFieldsList.add('and${affectedFieldsList.removeLast()} '); |
569 | } |
570 | final String whichFields = switch (affectedFieldsList.length) { |
571 | 1 => affectedFieldsList.single, |
572 | 2 => affectedFieldsList.join(' '), |
573 | _ => affectedFieldsList.join(', '), |
574 | }; |
575 | throwError( |
576 | ErrorSummary( |
577 | 'BoxConstraints has${affectedFieldsList.length == 1 ? 'a NaN value': 'NaN values'} in$whichFields .', |
578 | ), |
579 | ); |
580 | } |
581 | if (minWidth < 0.0 && minHeight < 0.0) { |
582 | throwError( |
583 | ErrorSummary( |
584 | 'BoxConstraints has both a negative minimum width and a negative minimum height.', |
585 | ), |
586 | ); |
587 | } |
588 | if (minWidth < 0.0) { |
589 | throwError(ErrorSummary('BoxConstraints has a negative minimum width.')); |
590 | } |
591 | if (minHeight < 0.0) { |
592 | throwError(ErrorSummary('BoxConstraints has a negative minimum height.')); |
593 | } |
594 | if (maxWidth < minWidth && maxHeight < minHeight) { |
595 | throwError( |
596 | ErrorSummary('BoxConstraints has both width and height constraints non-normalized.'), |
597 | ); |
598 | } |
599 | if (maxWidth < minWidth) { |
600 | throwError(ErrorSummary('BoxConstraints has non-normalized width constraints.')); |
601 | } |
602 | if (maxHeight < minHeight) { |
603 | throwError(ErrorSummary('BoxConstraints has non-normalized height constraints.')); |
604 | } |
605 | if (isAppliedConstraint) { |
606 | if (minWidth.isInfinite && minHeight.isInfinite) { |
607 | throwError(ErrorSummary('BoxConstraints forces an infinite width and infinite height.')); |
608 | } |
609 | if (minWidth.isInfinite) { |
610 | throwError(ErrorSummary('BoxConstraints forces an infinite width.')); |
611 | } |
612 | if (minHeight.isInfinite) { |
613 | throwError(ErrorSummary('BoxConstraints forces an infinite height.')); |
614 | } |
615 | } |
616 | assert(isNormalized); |
617 | return true; |
618 | }()); |
619 | return isNormalized; |
620 | } |
621 | |
622 | /// Returns a box constraints that [isNormalized]. |
623 | /// |
624 | /// The returned [maxWidth] is at least as large as the [minWidth]. Similarly, |
625 | /// the returned [maxHeight] is at least as large as the [minHeight]. |
626 | BoxConstraints normalize() { |
627 | if (isNormalized) { |
628 | return this; |
629 | } |
630 | final double minWidth = this.minWidth >= 0.0 ? this.minWidth : 0.0; |
631 | final double minHeight = this.minHeight >= 0.0 ? this.minHeight : 0.0; |
632 | return BoxConstraints( |
633 | minWidth: minWidth, |
634 | maxWidth: minWidth > maxWidth ? minWidth : maxWidth, |
635 | minHeight: minHeight, |
636 | maxHeight: minHeight > maxHeight ? minHeight : maxHeight, |
637 | ); |
638 | } |
639 | |
640 | @override |
641 | bool operator ==(Object other) { |
642 | assert(debugAssertIsValid()); |
643 | if (identical(this, other)) { |
644 | return true; |
645 | } |
646 | if (other.runtimeType != runtimeType) { |
647 | return false; |
648 | } |
649 | assert(other is BoxConstraints && other.debugAssertIsValid()); |
650 | return other is BoxConstraints && |
651 | other.minWidth == minWidth && |
652 | other.maxWidth == maxWidth && |
653 | other.minHeight == minHeight && |
654 | other.maxHeight == maxHeight; |
655 | } |
656 | |
657 | @override |
658 | int get hashCode { |
659 | assert(debugAssertIsValid()); |
660 | return Object.hash(minWidth, maxWidth, minHeight, maxHeight); |
661 | } |
662 | |
663 | @override |
664 | String toString() { |
665 | final String annotation = isNormalized ? '': '; NOT NORMALIZED'; |
666 | if (minWidth == double.infinity && minHeight == double.infinity) { |
667 | return 'BoxConstraints(biggest$annotation )'; |
668 | } |
669 | if (minWidth == 0 && |
670 | maxWidth == double.infinity && |
671 | minHeight == 0 && |
672 | maxHeight == double.infinity) { |
673 | return 'BoxConstraints(unconstrained$annotation )'; |
674 | } |
675 | String describe(double min, double max, String dim) { |
676 | if (min == max) { |
677 | return '$dim =${min.toStringAsFixed(1)} '; |
678 | } |
679 | return '${min.toStringAsFixed(1)} <=$dim <=${max.toStringAsFixed(1)} '; |
680 | } |
681 | |
682 | final String width = describe(minWidth, maxWidth, 'w'); |
683 | final String height = describe(minHeight, maxHeight, 'h'); |
684 | return 'BoxConstraints($width ,$height $annotation)'; |
685 | } |
686 | } |
687 | |
688 | /// Method signature for hit testing a [RenderBox]. |
689 | /// |
690 | /// Used by [BoxHitTestResult.addWithPaintTransform] to hit test children |
691 | /// of a [RenderBox]. |
692 | /// |
693 | /// See also: |
694 | /// |
695 | /// * [RenderBox.hitTest], which documents more details around hit testing |
696 | /// [RenderBox]es. |
697 | typedef BoxHitTest = bool Function(BoxHitTestResult result, Offset position); |
698 | |
699 | /// Method signature for hit testing a [RenderBox] with a manually |
700 | /// managed position (one that is passed out-of-band). |
701 | /// |
702 | /// Used by [RenderSliverSingleBoxAdapter.hitTestBoxChild] to hit test |
703 | /// [RenderBox] children of a [RenderSliver]. |
704 | /// |
705 | /// See also: |
706 | /// |
707 | /// * [RenderBox.hitTest], which documents more details around hit testing |
708 | /// [RenderBox]es. |
709 | typedef BoxHitTestWithOutOfBandPosition = bool Function(BoxHitTestResult result); |
710 | |
711 | /// The result of performing a hit test on [RenderBox]es. |
712 | /// |
713 | /// An instance of this class is provided to [RenderBox.hitTest] to record the |
714 | /// result of the hit test. |
715 | class BoxHitTestResult extends HitTestResult { |
716 | /// Creates an empty hit test result for hit testing on [RenderBox]. |
717 | BoxHitTestResult() : super(); |
718 | |
719 | /// Wraps `result` to create a [HitTestResult] that implements the |
720 | /// [BoxHitTestResult] protocol for hit testing on [RenderBox]es. |
721 | /// |
722 | /// This method is used by [RenderObject]s that adapt between the |
723 | /// [RenderBox]-world and the non-[RenderBox]-world to convert a (subtype of) |
724 | /// [HitTestResult] to a [BoxHitTestResult] for hit testing on [RenderBox]es. |
725 | /// |
726 | /// The [HitTestEntry] instances added to the returned [BoxHitTestResult] are |
727 | /// also added to the wrapped `result` (both share the same underlying data |
728 | /// structure to store [HitTestEntry] instances). |
729 | /// |
730 | /// See also: |
731 | /// |
732 | /// * [HitTestResult.wrap], which turns a [BoxHitTestResult] back into a |
733 | /// generic [HitTestResult]. |
734 | /// * [SliverHitTestResult.wrap], which turns a [BoxHitTestResult] into a |
735 | /// [SliverHitTestResult] for hit testing on [RenderSliver] children. |
736 | BoxHitTestResult.wrap(super.result) : super.wrap(); |
737 | |
738 | /// Transforms `position` to the local coordinate system of a child for |
739 | /// hit-testing the child. |
740 | /// |
741 | /// The actual hit testing of the child needs to be implemented in the |
742 | /// provided `hitTest` callback, which is invoked with the transformed |
743 | /// `position` as argument. |
744 | /// |
745 | /// The provided paint `transform` (which describes the transform from the |
746 | /// child to the parent in 3D) is processed by |
747 | /// [PointerEvent.removePerspectiveTransform] to remove the |
748 | /// perspective component and inverted before it is used to transform |
749 | /// `position` from the coordinate system of the parent to the system of the |
750 | /// child. |
751 | /// |
752 | /// If `transform` is null it will be treated as the identity transform and |
753 | /// `position` is provided to the `hitTest` callback as-is. If `transform` |
754 | /// cannot be inverted, the `hitTest` callback is not invoked and false is |
755 | /// returned. Otherwise, the return value of the `hitTest` callback is |
756 | /// returned. |
757 | /// |
758 | /// The `position` argument may be null, which will be forwarded to the |
759 | /// `hitTest` callback as-is. Using null as the position can be useful if |
760 | /// the child speaks a different hit test protocol than the parent and the |
761 | /// position is not required to do the actual hit testing in that protocol. |
762 | /// |
763 | /// The function returns the return value of the `hitTest` callback. |
764 | /// |
765 | /// {@tool snippet} |
766 | /// This method is used in [RenderBox.hitTestChildren] when the child and |
767 | /// parent don't share the same origin. |
768 | /// |
769 | /// ```dart |
770 | /// abstract class RenderFoo extends RenderBox { |
771 | /// final Matrix4 _effectiveTransform = Matrix4.rotationZ(50); |
772 | /// |
773 | /// @override |
774 | /// void applyPaintTransform(RenderBox child, Matrix4 transform) { |
775 | /// transform.multiply(_effectiveTransform); |
776 | /// } |
777 | /// |
778 | /// @override |
779 | /// bool hitTestChildren(BoxHitTestResult result, { required Offset position }) { |
780 | /// return result.addWithPaintTransform( |
781 | /// transform: _effectiveTransform, |
782 | /// position: position, |
783 | /// hitTest: (BoxHitTestResult result, Offset position) { |
784 | /// return super.hitTestChildren(result, position: position); |
785 | /// }, |
786 | /// ); |
787 | /// } |
788 | /// } |
789 | /// ``` |
790 | /// {@end-tool} |
791 | /// |
792 | /// See also: |
793 | /// |
794 | /// * [addWithPaintOffset], which can be used for `transform`s that are just |
795 | /// simple matrix translations by an [Offset]. |
796 | /// * [addWithRawTransform], which takes a transform matrix that is directly |
797 | /// used to transform the position without any pre-processing. |
798 | bool addWithPaintTransform({ |
799 | required Matrix4? transform, |
800 | required Offset position, |
801 | required BoxHitTest hitTest, |
802 | }) { |
803 | if (transform != null) { |
804 | transform = Matrix4.tryInvert(PointerEvent.removePerspectiveTransform(transform)); |
805 | if (transform == null) { |
806 | // Objects are not visible on screen and cannot be hit-tested. |
807 | return false; |
808 | } |
809 | } |
810 | return addWithRawTransform(transform: transform, position: position, hitTest: hitTest); |
811 | } |
812 | |
813 | /// Convenience method for hit testing children, that are translated by |
814 | /// an [Offset]. |
815 | /// |
816 | /// The actual hit testing of the child needs to be implemented in the |
817 | /// provided `hitTest` callback, which is invoked with the transformed |
818 | /// `position` as argument. |
819 | /// |
820 | /// This method can be used as a convenience over [addWithPaintTransform] if |
821 | /// a parent paints a child at an `offset`. |
822 | /// |
823 | /// A null value for `offset` is treated as if [Offset.zero] was provided. |
824 | /// |
825 | /// The function returns the return value of the `hitTest` callback. |
826 | /// |
827 | /// See also: |
828 | /// |
829 | /// * [addWithPaintTransform], which takes a generic paint transform matrix and |
830 | /// documents the intended usage of this API in more detail. |
831 | bool addWithPaintOffset({ |
832 | required Offset? offset, |
833 | required Offset position, |
834 | required BoxHitTest hitTest, |
835 | }) { |
836 | final Offset transformedPosition = offset == null ? position : position - offset; |
837 | if (offset != null) { |
838 | pushOffset(-offset); |
839 | } |
840 | final bool isHit = hitTest(this, transformedPosition); |
841 | if (offset != null) { |
842 | popTransform(); |
843 | } |
844 | return isHit; |
845 | } |
846 | |
847 | /// Transforms `position` to the local coordinate system of a child for |
848 | /// hit-testing the child. |
849 | /// |
850 | /// The actual hit testing of the child needs to be implemented in the |
851 | /// provided `hitTest` callback, which is invoked with the transformed |
852 | /// `position` as argument. |
853 | /// |
854 | /// Unlike [addWithPaintTransform], the provided `transform` matrix is used |
855 | /// directly to transform `position` without any pre-processing. |
856 | /// |
857 | /// If `transform` is null it will be treated as the identity transform ad |
858 | /// `position` is provided to the `hitTest` callback as-is. |
859 | /// |
860 | /// The function returns the return value of the `hitTest` callback. |
861 | /// |
862 | /// See also: |
863 | /// |
864 | /// * [addWithPaintTransform], which accomplishes the same thing, but takes a |
865 | /// _paint_ transform matrix. |
866 | bool addWithRawTransform({ |
867 | required Matrix4? transform, |
868 | required Offset position, |
869 | required BoxHitTest hitTest, |
870 | }) { |
871 | final Offset transformedPosition = |
872 | transform == null ? position : MatrixUtils.transformPoint(transform, position); |
873 | if (transform != null) { |
874 | pushTransform(transform); |
875 | } |
876 | final bool isHit = hitTest(this, transformedPosition); |
877 | if (transform != null) { |
878 | popTransform(); |
879 | } |
880 | return isHit; |
881 | } |
882 | |
883 | /// Pass-through method for adding a hit test while manually managing |
884 | /// the position transformation logic. |
885 | /// |
886 | /// The actual hit testing of the child needs to be implemented in the |
887 | /// provided `hitTest` callback. The position needs to be handled by |
888 | /// the caller. |
889 | /// |
890 | /// The function returns the return value of the `hitTest` callback. |
891 | /// |
892 | /// A `paintOffset`, `paintTransform`, or `rawTransform` should be |
893 | /// passed to the method to update the hit test stack. |
894 | /// |
895 | /// * `paintOffset` has the semantics of the `offset` passed to |
896 | /// [addWithPaintOffset]. |
897 | /// |
898 | /// * `paintTransform` has the semantics of the `transform` passed to |
899 | /// [addWithPaintTransform], except that it must be invertible; it |
900 | /// is the responsibility of the caller to ensure this. |
901 | /// |
902 | /// * `rawTransform` has the semantics of the `transform` passed to |
903 | /// [addWithRawTransform]. |
904 | /// |
905 | /// Exactly one of these must be non-null. |
906 | /// |
907 | /// See also: |
908 | /// |
909 | /// * [addWithPaintTransform], which takes a generic paint transform matrix and |
910 | /// documents the intended usage of this API in more detail. |
911 | bool addWithOutOfBandPosition({ |
912 | Offset? paintOffset, |
913 | Matrix4? paintTransform, |
914 | Matrix4? rawTransform, |
915 | required BoxHitTestWithOutOfBandPosition hitTest, |
916 | }) { |
917 | assert( |
918 | (paintOffset == null && paintTransform == null && rawTransform != null) || |
919 | (paintOffset == null && paintTransform != null && rawTransform == null) || |
920 | (paintOffset != null && paintTransform == null && rawTransform == null), |
921 | 'Exactly one transform or offset argument must be provided.', |
922 | ); |
923 | if (paintOffset != null) { |
924 | pushOffset(-paintOffset); |
925 | } else if (rawTransform != null) { |
926 | pushTransform(rawTransform); |
927 | } else { |
928 | assert(paintTransform != null); |
929 | paintTransform = Matrix4.tryInvert(PointerEvent.removePerspectiveTransform(paintTransform!)); |
930 | assert(paintTransform != null,'paintTransform must be invertible.'); |
931 | pushTransform(paintTransform!); |
932 | } |
933 | final bool isHit = hitTest(this); |
934 | popTransform(); |
935 | return isHit; |
936 | } |
937 | } |
938 | |
939 | /// A hit test entry used by [RenderBox]. |
940 | class BoxHitTestEntry extends HitTestEntry<RenderBox> { |
941 | /// Creates a box hit test entry. |
942 | BoxHitTestEntry(super.target, this.localPosition); |
943 | |
944 | /// The position of the hit test in the local coordinates of [target]. |
945 | final Offset localPosition; |
946 | |
947 | @override |
948 | String toString() =>'${describeIdentity(target)}@$localPosition'; |
949 | } |
950 | |
951 | /// Parent data used by [RenderBox] and its subclasses. |
952 | /// |
953 | /// {@tool dartpad} |
954 | /// Parent data is used to communicate to a render object about its |
955 | /// children. In this example, there are two render objects that perform |
956 | /// text layout. They use parent data to identify the kind of child they |
957 | /// are laying out, and space the children accordingly. |
958 | /// |
959 | /// ** See code in examples/api/lib/rendering/box/parent_data.0.dart ** |
960 | /// {@end-tool} |
961 | class BoxParentData extends ParentData { |
962 | /// The offset at which to paint the child in the parent's coordinate system. |
963 | Offset offset = Offset.zero; |
964 | |
965 | @override |
966 | String toString() =>'offset=$offset'; |
967 | } |
968 | |
969 | /// Abstract [ParentData] subclass for [RenderBox] subclasses that want the |
970 | /// [ContainerRenderObjectMixin]. |
971 | /// |
972 | /// This is a convenience class that mixes in the relevant classes with |
973 | /// the relevant type arguments. |
974 | abstract class ContainerBoxParentData<ChildType extends RenderObject> extends BoxParentData |
975 | with ContainerParentDataMixin<ChildType> {} |
976 | |
977 | /// A wrapper that represents the baseline location of a `RenderBox`. |
978 | extension type const BaselineOffset(double? offset) { |
979 | /// A value that indicates that the associated `RenderBox` does not have any |
980 | /// baselines. |
981 | /// |
982 | /// [BaselineOffset.noBaseline] is an identity element in most binary |
983 | /// operations involving two [BaselineOffset]s (such as [minOf]), for render |
984 | /// objects with no baselines typically do not contribute to the baseline |
985 | /// offset of their parents. |
986 | static const BaselineOffset noBaseline = BaselineOffset(null); |
987 | |
988 | /// Returns a new baseline location that is `offset` pixels further away from |
989 | /// the origin than `this`, or unchanged if `this` is [noBaseline]. |
990 | BaselineOffset operator +(double offset) { |
991 | final double? value = this.offset; |
992 | return BaselineOffset(value == null ? null : value + offset); |
993 | } |
994 | |
995 | /// Compares this [BaselineOffset] and `other`, and returns whichever is closer |
996 | /// to the origin. |
997 | /// |
998 | /// When both `this` and `other` are [noBaseline], this method returns |
999 | /// [noBaseline]. When one of them is [noBaseline], this method returns the |
1000 | /// other operand that's not [noBaseline]. |
1001 | BaselineOffset minOf(BaselineOffset other) { |
1002 | return switch ((this, other)) { |
1003 | (final double lhs?, final double rhs?) => lhs >= rhs ? other : this, |
1004 | (final double lhs?, null) => BaselineOffset(lhs), |
1005 | (null, final BaselineOffset rhs) => rhs, |
1006 | }; |
1007 | } |
1008 | } |
1009 | |
1010 | /// An interface that represents a memoized layout computation run by a [RenderBox]. |
1011 | /// |
1012 | /// Each subclass is inhabited by a single object. Each object represents the |
1013 | /// signature of a memoized layout computation run by [RenderBox]. For instance, |
1014 | /// the [dryLayout] object of the [_DryLayout] subclass represents the signature |
1015 | /// of the [RenderBox.computeDryLayout] method: it takes a [BoxConstraints] (the |
1016 | /// subclass's `Input` type parameter) and returns a [Size] (the subclass's |
1017 | /// `Output` type parameter). |
1018 | /// |
1019 | /// Subclasses do not own their own cache storage. Rather, their [memoize] |
1020 | /// implementation takes a `cacheStorage`. If a prior computation with the same |
1021 | /// input values has already been memoized in `cacheStorage`, it returns the |
1022 | /// memoized value without running `computer`. Otherwise the method runs the |
1023 | /// `computer` to compute the return value, and caches the result to |
1024 | /// `cacheStorage`. |
1025 | /// |
1026 | /// The layout cache storage is typically cleared in `markNeedsLayout`, but is |
1027 | /// usually kept across [RenderObject.layout] calls because the incoming |
1028 | /// [BoxConstraints] is always an input of every layout computation. |
1029 | abstract class _CachedLayoutCalculation<Input extends Object, Output> { |
1030 | static const _DryLayout dryLayout = _DryLayout(); |
1031 | static const _Baseline baseline = _Baseline(); |
1032 | |
1033 | Output memoize(_LayoutCacheStorage cacheStorage, Input input, Output Function(Input) computer); |
1034 | |
1035 | // Debug information that will be used to generate the Timeline event for this type of calculation. |
1036 | Map<String, String> debugFillTimelineArguments( |
1037 | Map<String, String> timelineArguments, |
1038 | Input input, |
1039 | ); |
1040 | String eventLabel(RenderBox renderBox); |
1041 | } |
1042 | |
1043 | final class _DryLayout implements _CachedLayoutCalculation<BoxConstraints, Size> { |
1044 | const _DryLayout(); |
1045 | |
1046 | @override |
1047 | Size memoize( |
1048 | _LayoutCacheStorage cacheStorage, |
1049 | BoxConstraints input, |
1050 | Size Function(BoxConstraints) computer, |
1051 | ) { |
1052 | return (cacheStorage._cachedDryLayoutSizes ??= <BoxConstraints, Size>{}).putIfAbsent( |
1053 | input, |
1054 | () => computer(input), |
1055 | ); |
1056 | } |
1057 | |
1058 | @override |
1059 | Map<String, String> debugFillTimelineArguments( |
1060 | Map<String, String> timelineArguments, |
1061 | BoxConstraints input, |
1062 | ) { |
1063 | return timelineArguments..['getDryLayout constraints'] ='$input'; |
1064 | } |
1065 | |
1066 | @override |
1067 | String eventLabel(RenderBox renderBox) =>'${renderBox.runtimeType}.getDryLayout'; |
1068 | } |
1069 | |
1070 | final class _Baseline |
1071 | implements _CachedLayoutCalculation<(BoxConstraints, TextBaseline), BaselineOffset> { |
1072 | const _Baseline(); |
1073 | |
1074 | @override |
1075 | BaselineOffset memoize( |
1076 | _LayoutCacheStorage cacheStorage, |
1077 | (BoxConstraints, TextBaseline) input, |
1078 | BaselineOffset Function((BoxConstraints, TextBaseline)) computer, |
1079 | ) { |
1080 | final Map<BoxConstraints, BaselineOffset> cache = switch (input.$2) { |
1081 | TextBaseline.alphabetic => |
1082 | cacheStorage._cachedAlphabeticBaseline ??= <BoxConstraints, BaselineOffset>{}, |
1083 | TextBaseline.ideographic => |
1084 | cacheStorage._cachedIdeoBaseline ??= <BoxConstraints, BaselineOffset>{}, |
1085 | }; |
1086 | BaselineOffset ifAbsent() => computer(input); |
1087 | return cache.putIfAbsent(input.$1, ifAbsent); |
1088 | } |
1089 | |
1090 | @override |
1091 | Map<String, String> debugFillTimelineArguments( |
1092 | Map<String, String> timelineArguments, |
1093 | (BoxConstraints, TextBaseline) input, |
1094 | ) { |
1095 | return timelineArguments |
1096 | ..['baseline type'] ='${input.$2}' |
1097 | ..['constraints'] ='${input.$1}'; |
1098 | } |
1099 | |
1100 | @override |
1101 | String eventLabel(RenderBox renderBox) =>'${renderBox.runtimeType}.getDryBaseline'; |
1102 | } |
1103 | |
1104 | // Intrinsic dimension calculation that computes the intrinsic width given the |
1105 | // max height, or the intrinsic height given the max width. |
1106 | enum _IntrinsicDimension implements _CachedLayoutCalculation<double, double> { |
1107 | minWidth, |
1108 | maxWidth, |
1109 | minHeight, |
1110 | maxHeight; |
1111 | |
1112 | @override |
1113 | double memoize(_LayoutCacheStorage cacheStorage, double input, double Function(double) computer) { |
1114 | return (cacheStorage._cachedIntrinsicDimensions ??= <(_IntrinsicDimension, double), double>{}) |
1115 | .putIfAbsent((this, input), () => computer(input)); |
1116 | } |
1117 | |
1118 | @override |
1119 | Map<String, String> debugFillTimelineArguments( |
1120 | Map<String, String> timelineArguments, |
1121 | double input, |
1122 | ) { |
1123 | return timelineArguments |
1124 | ..['intrinsics dimension'] = name |
1125 | ..['intrinsics argument'] ='$input'; |
1126 | } |
1127 | |
1128 | @override |
1129 | String eventLabel(RenderBox renderBox) =>'${renderBox.runtimeType}intrinsics'; |
1130 | } |
1131 | |
1132 | final class _LayoutCacheStorage { |
1133 | Map<(_IntrinsicDimension, double), double>? _cachedIntrinsicDimensions; |
1134 | Map<BoxConstraints, Size>? _cachedDryLayoutSizes; |
1135 | Map<BoxConstraints, BaselineOffset>? _cachedAlphabeticBaseline; |
1136 | Map<BoxConstraints, BaselineOffset>? _cachedIdeoBaseline; |
1137 | |
1138 | // Returns a boolean indicating whether the cache storage has cached |
1139 | // intrinsics / dry layout data in it. |
1140 | bool clear() { |
1141 | final bool hasCache = |
1142 | (_cachedDryLayoutSizes?.isNotEmpty ?? false) || |
1143 | (_cachedIntrinsicDimensions?.isNotEmpty ?? false) || |
1144 | (_cachedAlphabeticBaseline?.isNotEmpty ?? false) || |
1145 | (_cachedIdeoBaseline?.isNotEmpty ?? false); |
1146 | |
1147 | if (hasCache) { |
1148 | _cachedDryLayoutSizes?.clear(); |
1149 | _cachedIntrinsicDimensions?.clear(); |
1150 | _cachedAlphabeticBaseline?.clear(); |
1151 | _cachedIdeoBaseline?.clear(); |
1152 | } |
1153 | return hasCache; |
1154 | } |
1155 | } |
1156 | |
1157 | /// A render object in a 2D Cartesian coordinate system. |
1158 | /// |
1159 | /// The [size] of each box is expressed as a width and a height. Each box has |
1160 | /// its own coordinate system in which its upper left corner is placed at (0, |
1161 | /// 0). The lower right corner of the box is therefore at (width, height). The |
1162 | /// box contains all the points including the upper left corner and extending |
1163 | /// to, but not including, the lower right corner. |
1164 | /// |
1165 | /// Box layout is performed by passing a [BoxConstraints] object down the tree. |
1166 | /// The box constraints establish a min and max value for the child's width and |
1167 | /// height. In determining its size, the child must respect the constraints |
1168 | /// given to it by its parent. |
1169 | /// |
1170 | /// This protocol is sufficient for expressing a number of common box layout |
1171 | /// data flows. For example, to implement a width-in-height-out data flow, call |
1172 | /// your child's [layout] function with a set of box constraints with a tight |
1173 | /// width value (and pass true for parentUsesSize). After the child determines |
1174 | /// its height, use the child's height to determine your size. |
1175 | /// |
1176 | /// ## Writing a RenderBox subclass |
1177 | /// |
1178 | /// One would implement a new [RenderBox] subclass to describe a new layout |
1179 | /// model, new paint model, new hit-testing model, or new semantics model, while |
1180 | /// remaining in the Cartesian space defined by the [RenderBox] protocol. |
1181 | /// |
1182 | /// To create a new protocol, consider subclassing [RenderObject] instead. |
1183 | /// |
1184 | /// ### Constructors and properties of a new RenderBox subclass |
1185 | /// |
1186 | /// The constructor will typically take a named argument for each property of |
1187 | /// the class. The value is then passed to a private field of the class and the |
1188 | /// constructor asserts its correctness (e.g. if it should not be null, it |
1189 | /// asserts it's not null). |
1190 | /// |
1191 | /// Properties have the form of a getter/setter/field group like the following: |
1192 | /// |
1193 | /// ```dart |
1194 | /// AxisDirection get axis => _axis; |
1195 | /// AxisDirection _axis = AxisDirection.down; // or initialized in constructor |
1196 | /// set axis(AxisDirection value) { |
1197 | /// if (value == _axis) { |
1198 | /// return; |
1199 | /// } |
1200 | /// _axis = value; |
1201 | /// markNeedsLayout(); |
1202 | /// } |
1203 | /// ``` |
1204 | /// |
1205 | /// The setter will typically finish with either a call to [markNeedsLayout], if |
1206 | /// the layout uses this property, or [markNeedsPaint], if only the painter |
1207 | /// function does. (No need to call both, [markNeedsLayout] implies |
1208 | /// [markNeedsPaint].) |
1209 | /// |
1210 | /// Consider layout and paint to be expensive; be conservative about calling |
1211 | /// [markNeedsLayout] or [markNeedsPaint]. They should only be called if the |
1212 | /// layout (or paint, respectively) has actually changed. |
1213 | /// |
1214 | /// ### Children |
1215 | /// |
1216 | /// If a render object is a leaf, that is, it cannot have any children, then |
1217 | /// ignore this section. (Examples of leaf render objects are [RenderImage] and |
1218 | /// [RenderParagraph].) |
1219 | /// |
1220 | /// For render objects with children, there are four possible scenarios: |
1221 | /// |
1222 | /// * A single [RenderBox] child. In this scenario, consider inheriting from |
1223 | /// [RenderProxyBox] (if the render object sizes itself to match the child) or |
1224 | /// [RenderShiftedBox] (if the child will be smaller than the box and the box |
1225 | /// will align the child inside itself). |
1226 | /// |
1227 | /// * A single child, but it isn't a [RenderBox]. Use the |
1228 | /// [RenderObjectWithChildMixin] mixin. |
1229 | /// |
1230 | /// * A single list of children. Use the [ContainerRenderObjectMixin] mixin. |
1231 | /// |
1232 | /// * A more complicated child model. |
1233 | /// |
1234 | /// #### Using RenderProxyBox |
1235 | /// |
1236 | /// By default, a [RenderProxyBox] render object sizes itself to fit its child, or |
1237 | /// to be as small as possible if there is no child; it passes all hit testing |
1238 | /// and painting on to the child, and intrinsic dimensions and baseline |
1239 | /// measurements similarly are proxied to the child. |
1240 | /// |
1241 | /// A subclass of [RenderProxyBox] just needs to override the parts of the |
1242 | /// [RenderBox] protocol that matter. For example, [RenderOpacity] just |
1243 | /// overrides the paint method (and [alwaysNeedsCompositing] to reflect what the |
1244 | /// paint method does, and the [visitChildrenForSemantics] method so that the |
1245 | /// child is hidden from accessibility tools when it's invisible), and adds an |
1246 | /// [RenderOpacity.opacity] field. |
1247 | /// |
1248 | /// [RenderProxyBox] assumes that the child is the size of the parent and |
1249 | /// positioned at 0,0. If this is not true, then use [RenderShiftedBox] instead. |
1250 | /// |
1251 | /// See |
1252 | /// [proxy_box.dart](https://github.com/flutter/flutter/blob/main/packages/flutter/lib/src/rendering/proxy_box.dart) |
1253 | /// for examples of inheriting from [RenderProxyBox]. |
1254 | /// |
1255 | /// #### Using RenderShiftedBox |
1256 | /// |
1257 | /// By default, a [RenderShiftedBox] acts much like a [RenderProxyBox] but |
1258 | /// without assuming that the child is positioned at 0,0 (the actual position |
1259 | /// recorded in the child's [parentData] field is used), and without providing a |
1260 | /// default layout algorithm. |
1261 | /// |
1262 | /// See |
1263 | /// [shifted_box.dart](https://github.com/flutter/flutter/blob/main/packages/flutter/lib/src/rendering/shifted_box.dart) |
1264 | /// for examples of inheriting from [RenderShiftedBox]. |
1265 | /// |
1266 | /// #### Kinds of children and child-specific data |
1267 | /// |
1268 | /// A [RenderBox] doesn't have to have [RenderBox] children. One can use another |
1269 | /// subclass of [RenderObject] for a [RenderBox]'s children. See the discussion |
1270 | /// at [RenderObject]. |
1271 | /// |
1272 | /// Children can have additional data owned by the parent but stored on the |
1273 | /// child using the [parentData] field. The class used for that data must |
1274 | /// inherit from [ParentData]. The [setupParentData] method is used to |
1275 | /// initialize the [parentData] field of a child when the child is attached. |
1276 | /// |
1277 | /// By convention, [RenderBox] objects that have [RenderBox] children use the |
1278 | /// [BoxParentData] class, which has a [BoxParentData.offset] field to store the |
1279 | /// position of the child relative to the parent. ([RenderProxyBox] does not |
1280 | /// need this offset and therefore is an exception to this rule.) |
1281 | /// |
1282 | /// #### Using RenderObjectWithChildMixin |
1283 | /// |
1284 | /// If a render object has a single child but it isn't a [RenderBox], then the |
1285 | /// [RenderObjectWithChildMixin] class, which is a mixin that will handle the |
1286 | /// boilerplate of managing a child, will be useful. |
1287 | /// |
1288 | /// It's a generic class with one type argument, the type of the child. For |
1289 | /// example, if you are building a `RenderFoo` class which takes a single |
1290 | /// `RenderBar` child, you would use the mixin as follows: |
1291 | /// |
1292 | /// ```dart |
1293 | /// class RenderFoo extends RenderBox |
1294 | /// with RenderObjectWithChildMixin<RenderBar> { |
1295 | /// // ... |
1296 | /// } |
1297 | /// ``` |
1298 | /// |
1299 | /// Since the `RenderFoo` class itself is still a [RenderBox] in this case, you |
1300 | /// still have to implement the [RenderBox] layout algorithm, as well as |
1301 | /// features like intrinsics and baselines, painting, and hit testing. |
1302 | /// |
1303 | /// #### Using ContainerRenderObjectMixin |
1304 | /// |
1305 | /// If a render box can have multiple children, then the |
1306 | /// [ContainerRenderObjectMixin] mixin can be used to handle the boilerplate. It |
1307 | /// uses a linked list to model the children in a manner that is easy to mutate |
1308 | /// dynamically and that can be walked efficiently. Random access is not |
1309 | /// efficient in this model; if you need random access to the children consider |
1310 | /// the next section on more complicated child models. |
1311 | /// |
1312 | /// The [ContainerRenderObjectMixin] class has two type arguments. The first is |
1313 | /// the type of the child objects. The second is the type for their |
1314 | /// [parentData]. The class used for [parentData] must itself have the |
1315 | /// [ContainerParentDataMixin] class mixed into it; this is where |
1316 | /// [ContainerRenderObjectMixin] stores the linked list. A [ParentData] class |
1317 | /// can extend [ContainerBoxParentData]; this is essentially |
1318 | /// [BoxParentData] mixed with [ContainerParentDataMixin]. For example, if a |
1319 | /// `RenderFoo` class wanted to have a linked list of [RenderBox] children, one |
1320 | /// might create a `FooParentData` class as follows: |
1321 | /// |
1322 | /// ```dart |
1323 | /// class FooParentData extends ContainerBoxParentData<RenderBox> { |
1324 | /// // (any fields you might need for these children) |
1325 | /// } |
1326 | /// ``` |
1327 | /// |
1328 | /// When using [ContainerRenderObjectMixin] in a [RenderBox], consider mixing in |
1329 | /// [RenderBoxContainerDefaultsMixin], which provides a collection of utility |
1330 | /// methods that implement common parts of the [RenderBox] protocol (such as |
1331 | /// painting the children). |
1332 | /// |
1333 | /// The declaration of the `RenderFoo` class itself would thus look like this: |
1334 | /// |
1335 | /// ```dart |
1336 | /// // continuing from previous example... |
1337 | /// class RenderFoo extends RenderBox with |
1338 | /// ContainerRenderObjectMixin<RenderBox, FooParentData>, |
1339 | /// RenderBoxContainerDefaultsMixin<RenderBox, FooParentData> { |
1340 | /// // ... |
1341 | /// } |
1342 | /// ``` |
1343 | /// |
1344 | /// When walking the children (e.g. during layout), the following pattern is |
1345 | /// commonly used (in this case assuming that the children are all [RenderBox] |
1346 | /// objects and that this render object uses `FooParentData` objects for its |
1347 | /// children's [parentData] fields): |
1348 | /// |
1349 | /// ```dart |
1350 | /// // continuing from previous example... |
1351 | /// RenderBox? child = firstChild; |
1352 | /// while (child != null) { |
1353 | /// final FooParentData childParentData = child.parentData! as FooParentData; |
1354 | /// // ...operate on child and childParentData... |
1355 | /// assert(child.parentData == childParentData); |
1356 | /// child = childParentData.nextSibling; |
1357 | /// } |
1358 | /// ``` |
1359 | /// |
1360 | /// #### More complicated child models |
1361 | /// |
1362 | /// Render objects can have more complicated models, for example a map of |
1363 | /// children keyed on an enum, or a 2D grid of efficiently randomly-accessible |
1364 | /// children, or multiple lists of children, etc. If a render object has a model |
1365 | /// that can't be handled by the mixins above, it must implement the |
1366 | /// [RenderObject] child protocol, as follows: |
1367 | /// |
1368 | /// * Any time a child is removed, call [dropChild] with the child. |
1369 | /// |
1370 | /// * Any time a child is added, call [adoptChild] with the child. |
1371 | /// |
1372 | /// * Implement the [attach] method such that it calls [attach] on each child. |
1373 | /// |
1374 | /// * Implement the [detach] method such that it calls [detach] on each child. |
1375 | /// |
1376 | /// * Implement the [redepthChildren] method such that it calls [redepthChild] |
1377 | /// on each child. |
1378 | /// |
1379 | /// * Implement the [visitChildren] method such that it calls its argument for |
1380 | /// each child, typically in paint order (back-most to front-most). |
1381 | /// |
1382 | /// * Implement [debugDescribeChildren] such that it outputs a [DiagnosticsNode] |
1383 | /// for each child. |
1384 | /// |
1385 | /// Implementing these seven bullet points is essentially all that the two |
1386 | /// aforementioned mixins do. |
1387 | /// |
1388 | /// ### Layout |
1389 | /// |
1390 | /// [RenderBox] classes implement a layout algorithm. They have a set of |
1391 | /// constraints provided to them, and they size themselves based on those |
1392 | /// constraints and whatever other inputs they may have (for example, their |
1393 | /// children or properties). |
1394 | /// |
1395 | /// When implementing a [RenderBox] subclass, one must make a choice. Does it |
1396 | /// size itself exclusively based on the constraints, or does it use any other |
1397 | /// information in sizing itself? An example of sizing purely based on the |
1398 | /// constraints would be growing to fit the parent. |
1399 | /// |
1400 | /// Sizing purely based on the constraints allows the system to make some |
1401 | /// significant optimizations. Classes that use this approach should override |
1402 | /// [sizedByParent] to return true, and then override [computeDryLayout] to |
1403 | /// compute the [Size] using nothing but the constraints, e.g.: |
1404 | /// |
1405 | /// ```dart |
1406 | /// @override |
1407 | /// bool get sizedByParent => true; |
1408 | /// |
1409 | /// @override |
1410 | /// Size computeDryLayout(BoxConstraints constraints) { |
1411 | /// return constraints.smallest; |
1412 | /// } |
1413 | /// ``` |
1414 | /// |
1415 | /// Otherwise, the size is set in the [performLayout] function. |
1416 | /// |
1417 | /// The [performLayout] function is where render boxes decide, if they are not |
1418 | /// [sizedByParent], what [size] they should be, and also where they decide |
1419 | /// where their children should be. |
1420 | /// |
1421 | /// #### Layout of RenderBox children |
1422 | /// |
1423 | /// The [performLayout] function should call the [layout] function of each (box) |
1424 | /// child, passing it a [BoxConstraints] object describing the constraints |
1425 | /// within which the child can render. Passing tight constraints (see |
1426 | /// [BoxConstraints.isTight]) to the child will allow the rendering library to |
1427 | /// apply some optimizations, as it knows that if the constraints are tight, the |
1428 | /// child's dimensions cannot change even if the layout of the child itself |
1429 | /// changes. |
1430 | /// |
1431 | /// If the [performLayout] function will use the child's size to affect other |
1432 | /// aspects of the layout, for example if the render box sizes itself around the |
1433 | /// child, or positions several children based on the size of those children, |
1434 | /// then it must specify the `parentUsesSize` argument to the child's [layout] |
1435 | /// function, setting it to true. |
1436 | /// |
1437 | /// This flag turns off some optimizations; algorithms that do not rely on the |
1438 | /// children's sizes will be more efficient. (In particular, relying on the |
1439 | /// child's [size] means that if the child is marked dirty for layout, the |
1440 | /// parent will probably also be marked dirty for layout, unless the |
1441 | /// [constraints] given by the parent to the child were tight constraints.) |
1442 | /// |
1443 | /// For [RenderBox] classes that do not inherit from [RenderProxyBox], once they |
1444 | /// have laid out their children, they should also position them, by setting the |
1445 | /// [BoxParentData.offset] field of each child's [parentData] object. |
1446 | /// |
1447 | /// #### Layout of non-RenderBox children |
1448 | /// |
1449 | /// The children of a [RenderBox] do not have to be [RenderBox]es themselves. If |
1450 | /// they use another protocol (as discussed at [RenderObject]), then instead of |
1451 | /// [BoxConstraints], the parent would pass in the appropriate [Constraints] |
1452 | /// subclass, and instead of reading the child's size, the parent would read |
1453 | /// whatever the output of [layout] is for that layout protocol. The |
1454 | /// `parentUsesSize` flag is still used to indicate whether the parent is going |
1455 | /// to read that output, and optimizations still kick in if the child has tight |
1456 | /// constraints (as defined by [Constraints.isTight]). |
1457 | /// |
1458 | /// ### Painting |
1459 | /// |
1460 | /// To describe how a render box paints, implement the [paint] method. It is |
1461 | /// given a [PaintingContext] object and an [Offset]. The painting context |
1462 | /// provides methods to affect the layer tree as well as a |
1463 | /// [PaintingContext.canvas] which can be used to add drawing commands. The |
1464 | /// canvas object should not be cached across calls to the [PaintingContext]'s |
1465 | /// methods; every time a method on [PaintingContext] is called, there is a |
1466 | /// chance that the canvas will change identity. The offset specifies the |
1467 | /// position of the top left corner of the box in the coordinate system of the |
1468 | /// [PaintingContext.canvas]. |
1469 | /// |
1470 | /// To draw text on a canvas, use a [TextPainter]. |
1471 | /// |
1472 | /// To draw an image to a canvas, use the [paintImage] method. |
1473 | /// |
1474 | /// A [RenderBox] that uses methods on [PaintingContext] that introduce new |
1475 | /// layers should override the [alwaysNeedsCompositing] getter and set it to |
1476 | /// true. If the object sometimes does and sometimes does not, it can have that |
1477 | /// getter return true in some cases and false in others. In that case, whenever |
1478 | /// the return value would change, call [markNeedsCompositingBitsUpdate]. (This |
1479 | /// is done automatically when a child is added or removed, so you don't have to |
1480 | /// call it explicitly if the [alwaysNeedsCompositing] getter only changes value |
1481 | /// based on the presence or absence of children.) |
1482 | /// |
1483 | /// Anytime anything changes on the object that would cause the [paint] method |
1484 | /// to paint something different (but would not cause the layout to change), |
1485 | /// the object should call [markNeedsPaint]. |
1486 | /// |
1487 | /// #### Painting children |
1488 | /// |
1489 | /// The [paint] method's `context` argument has a [PaintingContext.paintChild] |
1490 | /// method, which should be called for each child that is to be painted. It |
1491 | /// should be given a reference to the child, and an [Offset] giving the |
1492 | /// position of the child relative to the parent. |
1493 | /// |
1494 | /// If the [paint] method applies a transform to the painting context before |
1495 | /// painting children (or generally applies an additional offset beyond the |
1496 | /// offset it was itself given as an argument), then the [applyPaintTransform] |
1497 | /// method should also be overridden. That method must adjust the matrix that it |
1498 | /// is given in the same manner as it transformed the painting context and |
1499 | /// offset before painting the given child. This is used by the [globalToLocal] |
1500 | /// and [localToGlobal] methods. |
1501 | /// |
1502 | /// #### Hit Tests |
1503 | /// |
1504 | /// Hit testing for render boxes is implemented by the [hitTest] method. The |
1505 | /// default implementation of this method defers to [hitTestSelf] and |
1506 | /// [hitTestChildren]. When implementing hit testing, you can either override |
1507 | /// these latter two methods, or ignore them and just override [hitTest]. |
1508 | /// |
1509 | /// The [hitTest] method itself is given an [Offset], and must return true if the |
1510 | /// object or one of its children has absorbed the hit (preventing objects below |
1511 | /// this one from being hit), or false if the hit can continue to other objects |
1512 | /// below this one. |
1513 | /// |
1514 | /// For each child [RenderBox], the [hitTest] method on the child should be |
1515 | /// called with the same [HitTestResult] argument and with the point transformed |
1516 | /// into the child's coordinate space (in the same manner that the |
1517 | /// [applyPaintTransform] method would). The default implementation defers to |
1518 | /// [hitTestChildren] to call the children. [RenderBoxContainerDefaultsMixin] |
1519 | /// provides a [RenderBoxContainerDefaultsMixin.defaultHitTestChildren] method |
1520 | /// that does this assuming that the children are axis-aligned, not transformed, |
1521 | /// and positioned according to the [BoxParentData.offset] field of the |
1522 | /// [parentData]; more elaborate boxes can override [hitTestChildren] |
1523 | /// accordingly. |
1524 | /// |
1525 | /// If the object is hit, then it should also add itself to the [HitTestResult] |
1526 | /// object that is given as an argument to the [hitTest] method, using |
1527 | /// [HitTestResult.add]. The default implementation defers to [hitTestSelf] to |
1528 | /// determine if the box is hit. If the object adds itself before the children |
1529 | /// can add themselves, then it will be as if the object was above the children. |
1530 | /// If it adds itself after the children, then it will be as if it was below the |
1531 | /// children. Entries added to the [HitTestResult] object should use the |
1532 | /// [BoxHitTestEntry] class. The entries are subsequently walked by the system |
1533 | /// in the order they were added, and for each entry, the target's [handleEvent] |
1534 | /// method is called, passing in the [HitTestEntry] object. |
1535 | /// |
1536 | /// Hit testing cannot rely on painting having happened. |
1537 | /// |
1538 | /// ### Semantics |
1539 | /// |
1540 | /// For a render box to be accessible, implement the |
1541 | /// [describeApproximatePaintClip], [visitChildrenForSemantics], and |
1542 | /// [describeSemanticsConfiguration] methods. The default implementations are |
1543 | /// sufficient for objects that only affect layout, but nodes that represent |
1544 | /// interactive components or information (diagrams, text, images, etc) should |
1545 | /// provide more complete implementations. For more information, see the |
1546 | /// documentation for these members. |
1547 | /// |
1548 | /// ### Intrinsics and Baselines |
1549 | /// |
1550 | /// The layout, painting, hit testing, and semantics protocols are common to all |
1551 | /// render objects. [RenderBox] objects must implement two additional protocols: |
1552 | /// intrinsic sizing and baseline measurements. |
1553 | /// |
1554 | /// There are four methods to implement for intrinsic sizing, to compute the |
1555 | /// minimum and maximum intrinsic width and height of the box. The documentation |
1556 | /// for these methods discusses the protocol in detail: |
1557 | /// [computeMinIntrinsicWidth], [computeMaxIntrinsicWidth], |
1558 | /// [computeMinIntrinsicHeight], [computeMaxIntrinsicHeight]. |
1559 | /// |
1560 | /// Be sure to set [debugCheckIntrinsicSizes] to true in your unit tests if you |
1561 | /// do override any of these methods, which will add additional checks to |
1562 | /// help validate your implementation. |
1563 | /// |
1564 | /// In addition, if the box has any children, it must implement |
1565 | /// [computeDistanceToActualBaseline]. [RenderProxyBox] provides a simple |
1566 | /// implementation that forwards to the child; [RenderShiftedBox] provides an |
1567 | /// implementation that offsets the child's baseline information by the position |
1568 | /// of the child relative to the parent. If you do not inherited from either of |
1569 | /// these classes, however, you must implement the algorithm yourself. |
1570 | abstract class RenderBox extends RenderObject { |
1571 | @override |
1572 | void setupParentData(covariant RenderObject child) { |
1573 | if (child.parentData is! BoxParentData) { |
1574 | child.parentData = BoxParentData(); |
1575 | } |
1576 | } |
1577 | |
1578 | final _LayoutCacheStorage _layoutCacheStorage = _LayoutCacheStorage(); |
1579 | |
1580 | static int _debugIntrinsicsDepth = 0; |
1581 | Output _computeIntrinsics<Input extends Object, Output>( |
1582 | _CachedLayoutCalculation<Input, Output> type, |
1583 | Input input, |
1584 | Output Function(Input) computer, |
1585 | ) { |
1586 | assert( |
1587 | RenderObject.debugCheckingIntrinsics || !debugDoingThisResize, |
1588 | ); // performResize should not depend on anything except the incoming constraints |
1589 | bool shouldCache = true; |
1590 | assert(() { |
1591 | // we don't want the debug-mode intrinsic tests to affect |
1592 | // who gets marked dirty, etc. |
1593 | shouldCache = !RenderObject.debugCheckingIntrinsics; |
1594 | return true; |
1595 | }()); |
1596 | return shouldCache ? _computeWithTimeline(type, input, computer) : computer(input); |
1597 | } |
1598 | |
1599 | Output _computeWithTimeline<Input extends Object, Output>( |
1600 | _CachedLayoutCalculation<Input, Output> type, |
1601 | Input input, |
1602 | Output Function(Input) computer, |
1603 | ) { |
1604 | Map<String, String>? debugTimelineArguments; |
1605 | assert(() { |
1606 | final Map<String, String> arguments = |
1607 | debugEnhanceLayoutTimelineArguments |
1608 | ? toDiagnosticsNode().toTimelineArguments()! |
1609 | : <String, String>{}; |
1610 | debugTimelineArguments = type.debugFillTimelineArguments(arguments, input); |
1611 | return true; |
1612 | }()); |
1613 | if (!kReleaseMode) { |
1614 | if (debugProfileLayoutsEnabled || _debugIntrinsicsDepth == 0) { |
1615 | FlutterTimeline.startSync(type.eventLabel(this), arguments: debugTimelineArguments); |
1616 | } |
1617 | _debugIntrinsicsDepth += 1; |
1618 | } |
1619 | final Output result = type.memoize(_layoutCacheStorage, input, computer); |
1620 | if (!kReleaseMode) { |
1621 | _debugIntrinsicsDepth -= 1; |
1622 | if (debugProfileLayoutsEnabled || _debugIntrinsicsDepth == 0) { |
1623 | FlutterTimeline.finishSync(); |
1624 | } |
1625 | } |
1626 | return result; |
1627 | } |
1628 | |
1629 | /// Returns the minimum width that this box could be without failing to |
1630 | /// correctly paint its contents within itself, without clipping. |
1631 | /// |
1632 | /// The height argument may give a specific height to assume. The given height |
1633 | /// can be infinite, meaning that the intrinsic width in an unconstrained |
1634 | /// environment is being requested. The given height should never be negative |
1635 | /// or null. |
1636 | /// |
1637 | /// This function should only be called on one's children. Calling this |
1638 | /// function couples the child with the parent so that when the child's layout |
1639 | /// changes, the parent is notified (via [markNeedsLayout]). |
1640 | /// |
1641 | /// Calling this function is expensive as it can result in O(N^2) behavior. |
1642 | /// |
1643 | /// Do not override this method. Instead, implement [computeMinIntrinsicWidth]. |
1644 | @mustCallSuper |
1645 | double getMinIntrinsicWidth(double height) { |
1646 | assert(() { |
1647 | if (height < 0.0) { |
1648 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
1649 | ErrorSummary('The height argument to getMinIntrinsicWidth was negative.'), |
1650 | ErrorDescription('The argument to getMinIntrinsicWidth must not be negative or null.'), |
1651 | ErrorHint( |
1652 | 'If you perform computations on another height before passing it to ' |
1653 | 'getMinIntrinsicWidth, consider using math.max() or double.clamp() ' |
1654 | 'to force the value into the valid range.', |
1655 | ), |
1656 | ]); |
1657 | } |
1658 | return true; |
1659 | }()); |
1660 | return _computeIntrinsics(_IntrinsicDimension.minWidth, height, computeMinIntrinsicWidth); |
1661 | } |
1662 | |
1663 | /// Computes the value returned by [getMinIntrinsicWidth]. Do not call this |
1664 | /// function directly, instead, call [getMinIntrinsicWidth]. |
1665 | /// |
1666 | /// Override in subclasses that implement [performLayout]. This method should |
1667 | /// return the minimum width that this box could be without failing to |
1668 | /// correctly paint its contents within itself, without clipping. |
1669 | /// |
1670 | /// If the layout algorithm is independent of the context (e.g. it always |
1671 | /// tries to be a particular size), or if the layout algorithm is |
1672 | /// width-in-height-out, or if the layout algorithm uses both the incoming |
1673 | /// width and height constraints (e.g. it always sizes itself to |
1674 | /// [BoxConstraints.biggest]), then the `height` argument should be ignored. |
1675 | /// |
1676 | /// If the layout algorithm is strictly height-in-width-out, or is |
1677 | /// height-in-width-out when the width is unconstrained, then the height |
1678 | /// argument is the height to use. |
1679 | /// |
1680 | /// The `height` argument will never be negative or null. It may be infinite. |
1681 | /// |
1682 | /// If this algorithm depends on the intrinsic dimensions of a child, the |
1683 | /// intrinsic dimensions of that child should be obtained using the functions |
1684 | /// whose names start with `get`, not `compute`. |
1685 | /// |
1686 | /// This function should never return a negative or infinite value. |
1687 | /// |
1688 | /// Be sure to set [debugCheckIntrinsicSizes] to true in your unit tests if |
1689 | /// you do override this method, which will add additional checks to help |
1690 | /// validate your implementation. |
1691 | /// |
1692 | /// ## Examples |
1693 | /// |
1694 | /// ### Text |
1695 | /// |
1696 | /// English text is the canonical example of a width-in-height-out algorithm. |
1697 | /// The `height` argument is therefore ignored. |
1698 | /// |
1699 | /// Consider the string "Hello World". The _maximum_ intrinsic width (as |
1700 | /// returned from [computeMaxIntrinsicWidth]) would be the width of the string |
1701 | /// with no line breaks. |
1702 | /// |
1703 | /// The minimum intrinsic width would be the width of the widest word, "Hello" |
1704 | /// or "World". If the text is rendered in an even narrower width, however, it |
1705 | /// might still not overflow. For example, maybe the rendering would put a |
1706 | /// line-break half-way through the words, as in "Hel⁞lo⁞Wor⁞ld". However, |
1707 | /// this wouldn't be a _correct_ rendering, and [computeMinIntrinsicWidth] is |
1708 | /// defined as returning the minimum width that the box could be without |
1709 | /// failing to _correctly_ paint the contents within itself. |
1710 | /// |
1711 | /// The minimum intrinsic _height_ for a given width _smaller_ than the |
1712 | /// minimum intrinsic width could therefore be greater than the minimum |
1713 | /// intrinsic height for the minimum intrinsic width. |
1714 | /// |
1715 | /// ### Viewports (e.g. scrolling lists) |
1716 | /// |
1717 | /// Some render boxes are intended to clip their children. For example, the |
1718 | /// render box for a scrolling list might always size itself to its parents' |
1719 | /// size (or rather, to the maximum incoming constraints), regardless of the |
1720 | /// children's sizes, and then clip the children and position them based on |
1721 | /// the current scroll offset. |
1722 | /// |
1723 | /// The intrinsic dimensions in these cases still depend on the children, even |
1724 | /// though the layout algorithm sizes the box in a way independent of the |
1725 | /// children. It is the size that is needed to paint the box's contents (in |
1726 | /// this case, the children) _without clipping_ that matters. |
1727 | /// |
1728 | /// ### When the intrinsic dimensions cannot be known |
1729 | /// |
1730 | /// There are cases where render objects do not have an efficient way to |
1731 | /// compute their intrinsic dimensions. For example, it may be prohibitively |
1732 | /// expensive to reify and measure every child of a lazy viewport (viewports |
1733 | /// generally only instantiate the actually visible children), or the |
1734 | /// dimensions may be computed by a callback about which the render object |
1735 | /// cannot reason. |
1736 | /// |
1737 | /// In such cases, it may be impossible (or at least impractical) to actually |
1738 | /// return a valid answer. In such cases, the intrinsic functions should throw |
1739 | /// when [RenderObject.debugCheckingIntrinsics] is false and asserts are |
1740 | /// enabled, and return 0.0 otherwise. |
1741 | /// |
1742 | /// See the implementations of [LayoutBuilder] or [RenderViewportBase] for |
1743 | /// examples (in particular, |
1744 | /// [RenderViewportBase.debugThrowIfNotCheckingIntrinsics]). |
1745 | /// |
1746 | /// ### Aspect-ratio-driven boxes |
1747 | /// |
1748 | /// Some boxes always return a fixed size based on the constraints. For these |
1749 | /// boxes, the intrinsic functions should return the appropriate size when the |
1750 | /// incoming `height` or `width` argument is finite, treating that as a tight |
1751 | /// constraint in the respective direction and treating the other direction's |
1752 | /// constraints as unbounded. This is because the definitions of |
1753 | /// [computeMinIntrinsicWidth] and [computeMinIntrinsicHeight] are in terms of |
1754 | /// what the dimensions _could be_, and such boxes can only be one size in |
1755 | /// such cases. |
1756 | /// |
1757 | /// When the incoming argument is not finite, then they should return the |
1758 | /// actual intrinsic dimensions based on the contents, as any other box would. |
1759 | /// |
1760 | /// See also: |
1761 | /// |
1762 | /// * [computeMaxIntrinsicWidth], which computes the smallest width beyond |
1763 | /// which increasing the width never decreases the preferred height. |
1764 | @protected |
1765 | double computeMinIntrinsicWidth(double height) { |
1766 | return 0.0; |
1767 | } |
1768 | |
1769 | /// Returns the smallest width beyond which increasing the width never |
1770 | /// decreases the preferred height. The preferred height is the value that |
1771 | /// would be returned by [getMinIntrinsicHeight] for that width. |
1772 | /// |
1773 | /// The height argument may give a specific height to assume. The given height |
1774 | /// can be infinite, meaning that the intrinsic width in an unconstrained |
1775 | /// environment is being requested. The given height should never be negative |
1776 | /// or null. |
1777 | /// |
1778 | /// This function should only be called on one's children. Calling this |
1779 | /// function couples the child with the parent so that when the child's layout |
1780 | /// changes, the parent is notified (via [markNeedsLayout]). |
1781 | /// |
1782 | /// Calling this function is expensive as it can result in O(N^2) behavior. |
1783 | /// |
1784 | /// Do not override this method. Instead, implement |
1785 | /// [computeMaxIntrinsicWidth]. |
1786 | @mustCallSuper |
1787 | double getMaxIntrinsicWidth(double height) { |
1788 | assert(() { |
1789 | if (height < 0.0) { |
1790 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
1791 | ErrorSummary('The height argument to getMaxIntrinsicWidth was negative.'), |
1792 | ErrorDescription('The argument to getMaxIntrinsicWidth must not be negative or null.'), |
1793 | ErrorHint( |
1794 | 'If you perform computations on another height before passing it to ' |
1795 | 'getMaxIntrinsicWidth, consider using math.max() or double.clamp() ' |
1796 | 'to force the value into the valid range.', |
1797 | ), |
1798 | ]); |
1799 | } |
1800 | return true; |
1801 | }()); |
1802 | return _computeIntrinsics(_IntrinsicDimension.maxWidth, height, computeMaxIntrinsicWidth); |
1803 | } |
1804 | |
1805 | /// Computes the value returned by [getMaxIntrinsicWidth]. Do not call this |
1806 | /// function directly, instead, call [getMaxIntrinsicWidth]. |
1807 | /// |
1808 | /// Override in subclasses that implement [performLayout]. This should return |
1809 | /// the smallest width beyond which increasing the width never decreases the |
1810 | /// preferred height. The preferred height is the value that would be returned |
1811 | /// by [computeMinIntrinsicHeight] for that width. |
1812 | /// |
1813 | /// If the layout algorithm is strictly height-in-width-out, or is |
1814 | /// height-in-width-out when the width is unconstrained, then this should |
1815 | /// return the same value as [computeMinIntrinsicWidth] for the same height. |
1816 | /// |
1817 | /// Otherwise, the height argument should be ignored, and the returned value |
1818 | /// should be equal to or bigger than the value returned by |
1819 | /// [computeMinIntrinsicWidth]. |
1820 | /// |
1821 | /// The `height` argument will never be negative or null. It may be infinite. |
1822 | /// |
1823 | /// The value returned by this method might not match the size that the object |
1824 | /// would actually take. For example, a [RenderBox] subclass that always |
1825 | /// exactly sizes itself using [BoxConstraints.biggest] might well size itself |
1826 | /// bigger than its max intrinsic size. |
1827 | /// |
1828 | /// If this algorithm depends on the intrinsic dimensions of a child, the |
1829 | /// intrinsic dimensions of that child should be obtained using the functions |
1830 | /// whose names start with `get`, not `compute`. |
1831 | /// |
1832 | /// This function should never return a negative or infinite value. |
1833 | /// |
1834 | /// Be sure to set [debugCheckIntrinsicSizes] to true in your unit tests if |
1835 | /// you do override this method, which will add additional checks to help |
1836 | /// validate your implementation. |
1837 | /// |
1838 | /// See also: |
1839 | /// |
1840 | /// * [computeMinIntrinsicWidth], which has usage examples. |
1841 | @visibleForOverriding |
1842 | @protected |
1843 | double computeMaxIntrinsicWidth(double height) { |
1844 | return 0.0; |
1845 | } |
1846 | |
1847 | /// Returns the minimum height that this box could be without failing to |
1848 | /// correctly paint its contents within itself, without clipping. |
1849 | /// |
1850 | /// The width argument may give a specific width to assume. The given width |
1851 | /// can be infinite, meaning that the intrinsic height in an unconstrained |
1852 | /// environment is being requested. The given width should never be negative |
1853 | /// or null. |
1854 | /// |
1855 | /// This function should only be called on one's children. Calling this |
1856 | /// function couples the child with the parent so that when the child's layout |
1857 | /// changes, the parent is notified (via [markNeedsLayout]). |
1858 | /// |
1859 | /// Calling this function is expensive as it can result in O(N^2) behavior. |
1860 | /// |
1861 | /// Do not override this method. Instead, implement |
1862 | /// [computeMinIntrinsicHeight]. |
1863 | @mustCallSuper |
1864 | double getMinIntrinsicHeight(double width) { |
1865 | assert(() { |
1866 | if (width < 0.0) { |
1867 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
1868 | ErrorSummary('The width argument to getMinIntrinsicHeight was negative.'), |
1869 | ErrorDescription('The argument to getMinIntrinsicHeight must not be negative or null.'), |
1870 | ErrorHint( |
1871 | 'If you perform computations on another width before passing it to ' |
1872 | 'getMinIntrinsicHeight, consider using math.max() or double.clamp() ' |
1873 | 'to force the value into the valid range.', |
1874 | ), |
1875 | ]); |
1876 | } |
1877 | return true; |
1878 | }()); |
1879 | return _computeIntrinsics(_IntrinsicDimension.minHeight, width, computeMinIntrinsicHeight); |
1880 | } |
1881 | |
1882 | /// Computes the value returned by [getMinIntrinsicHeight]. Do not call this |
1883 | /// function directly, instead, call [getMinIntrinsicHeight]. |
1884 | /// |
1885 | /// Override in subclasses that implement [performLayout]. Should return the |
1886 | /// minimum height that this box could be without failing to correctly paint |
1887 | /// its contents within itself, without clipping. |
1888 | /// |
1889 | /// If the layout algorithm is independent of the context (e.g. it always |
1890 | /// tries to be a particular size), or if the layout algorithm is |
1891 | /// height-in-width-out, or if the layout algorithm uses both the incoming |
1892 | /// height and width constraints (e.g. it always sizes itself to |
1893 | /// [BoxConstraints.biggest]), then the `width` argument should be ignored. |
1894 | /// |
1895 | /// If the layout algorithm is strictly width-in-height-out, or is |
1896 | /// width-in-height-out when the height is unconstrained, then the width |
1897 | /// argument is the width to use. |
1898 | /// |
1899 | /// The `width` argument will never be negative or null. It may be infinite. |
1900 | /// |
1901 | /// If this algorithm depends on the intrinsic dimensions of a child, the |
1902 | /// intrinsic dimensions of that child should be obtained using the functions |
1903 | /// whose names start with `get`, not `compute`. |
1904 | /// |
1905 | /// This function should never return a negative or infinite value. |
1906 | /// |
1907 | /// Be sure to set [debugCheckIntrinsicSizes] to true in your unit tests if |
1908 | /// you do override this method, which will add additional checks to help |
1909 | /// validate your implementation. |
1910 | /// |
1911 | /// See also: |
1912 | /// |
1913 | /// * [computeMinIntrinsicWidth], which has usage examples. |
1914 | /// * [computeMaxIntrinsicHeight], which computes the smallest height beyond |
1915 | /// which increasing the height never decreases the preferred width. |
1916 | @visibleForOverriding |
1917 | @protected |
1918 | double computeMinIntrinsicHeight(double width) { |
1919 | return 0.0; |
1920 | } |
1921 | |
1922 | /// Returns the smallest height beyond which increasing the height never |
1923 | /// decreases the preferred width. The preferred width is the value that |
1924 | /// would be returned by [getMinIntrinsicWidth] for that height. |
1925 | /// |
1926 | /// The width argument may give a specific width to assume. The given width |
1927 | /// can be infinite, meaning that the intrinsic height in an unconstrained |
1928 | /// environment is being requested. The given width should never be negative |
1929 | /// or null. |
1930 | /// |
1931 | /// This function should only be called on one's children. Calling this |
1932 | /// function couples the child with the parent so that when the child's layout |
1933 | /// changes, the parent is notified (via [markNeedsLayout]). |
1934 | /// |
1935 | /// Calling this function is expensive as it can result in O(N^2) behavior. |
1936 | /// |
1937 | /// Do not override this method. Instead, implement |
1938 | /// [computeMaxIntrinsicHeight]. |
1939 | @mustCallSuper |
1940 | double getMaxIntrinsicHeight(double width) { |
1941 | assert(() { |
1942 | if (width < 0.0) { |
1943 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
1944 | ErrorSummary('The width argument to getMaxIntrinsicHeight was negative.'), |
1945 | ErrorDescription('The argument to getMaxIntrinsicHeight must not be negative or null.'), |
1946 | ErrorHint( |
1947 | 'If you perform computations on another width before passing it to ' |
1948 | 'getMaxIntrinsicHeight, consider using math.max() or double.clamp() ' |
1949 | 'to force the value into the valid range.', |
1950 | ), |
1951 | ]); |
1952 | } |
1953 | return true; |
1954 | }()); |
1955 | return _computeIntrinsics(_IntrinsicDimension.maxHeight, width, computeMaxIntrinsicHeight); |
1956 | } |
1957 | |
1958 | /// Computes the value returned by [getMaxIntrinsicHeight]. Do not call this |
1959 | /// function directly, instead, call [getMaxIntrinsicHeight]. |
1960 | /// |
1961 | /// Override in subclasses that implement [performLayout]. Should return the |
1962 | /// smallest height beyond which increasing the height never decreases the |
1963 | /// preferred width. The preferred width is the value that would be returned |
1964 | /// by [computeMinIntrinsicWidth] for that height. |
1965 | /// |
1966 | /// If the layout algorithm is strictly width-in-height-out, or is |
1967 | /// width-in-height-out when the height is unconstrained, then this should |
1968 | /// return the same value as [computeMinIntrinsicHeight] for the same width. |
1969 | /// |
1970 | /// Otherwise, the width argument should be ignored, and the returned value |
1971 | /// should be equal to or bigger than the value returned by |
1972 | /// [computeMinIntrinsicHeight]. |
1973 | /// |
1974 | /// The `width` argument will never be negative or null. It may be infinite. |
1975 | /// |
1976 | /// The value returned by this method might not match the size that the object |
1977 | /// would actually take. For example, a [RenderBox] subclass that always |
1978 | /// exactly sizes itself using [BoxConstraints.biggest] might well size itself |
1979 | /// bigger than its max intrinsic size. |
1980 | /// |
1981 | /// If this algorithm depends on the intrinsic dimensions of a child, the |
1982 | /// intrinsic dimensions of that child should be obtained using the functions |
1983 | /// whose names start with `get`, not `compute`. |
1984 | /// |
1985 | /// This function should never return a negative or infinite value. |
1986 | /// |
1987 | /// Be sure to set [debugCheckIntrinsicSizes] to true in your unit tests if |
1988 | /// you do override this method, which will add additional checks to help |
1989 | /// validate your implementation. |
1990 | /// |
1991 | /// See also: |
1992 | /// |
1993 | /// * [computeMinIntrinsicWidth], which has usage examples. |
1994 | @visibleForOverriding |
1995 | @protected |
1996 | double computeMaxIntrinsicHeight(double width) { |
1997 | return 0.0; |
1998 | } |
1999 | |
2000 | /// Returns the [Size] that this [RenderBox] would like to be given the |
2001 | /// provided [BoxConstraints]. |
2002 | /// |
2003 | /// The size returned by this method is guaranteed to be the same size that |
2004 | /// this [RenderBox] computes for itself during layout given the same |
2005 | /// constraints. |
2006 | /// |
2007 | /// This function should only be called on one's children. Calling this |
2008 | /// function couples the child with the parent so that when the child's layout |
2009 | /// changes, the parent is notified (via [markNeedsLayout]). |
2010 | /// |
2011 | /// This layout is called "dry" layout as opposed to the regular "wet" layout |
2012 | /// run performed by [performLayout] because it computes the desired size for |
2013 | /// the given constraints without changing any internal state. |
2014 | /// |
2015 | /// Calling this function is expensive as it can result in O(N^2) behavior. |
2016 | /// |
2017 | /// Do not override this method. Instead, implement [computeDryLayout]. |
2018 | @mustCallSuper |
2019 | Size getDryLayout(covariant BoxConstraints constraints) { |
2020 | return _computeIntrinsics(_CachedLayoutCalculation.dryLayout, constraints, _computeDryLayout); |
2021 | } |
2022 | |
2023 | bool _computingThisDryLayout = false; |
2024 | Size _computeDryLayout(BoxConstraints constraints) { |
2025 | assert(() { |
2026 | assert(!_computingThisDryLayout); |
2027 | _computingThisDryLayout = true; |
2028 | return true; |
2029 | }()); |
2030 | final Size result = computeDryLayout(constraints); |
2031 | assert(() { |
2032 | assert(_computingThisDryLayout); |
2033 | _computingThisDryLayout = false; |
2034 | return true; |
2035 | }()); |
2036 | return result; |
2037 | } |
2038 | |
2039 | /// Computes the value returned by [getDryLayout]. Do not call this |
2040 | /// function directly, instead, call [getDryLayout]. |
2041 | /// |
2042 | /// Override in subclasses that implement [performLayout] or [performResize] |
2043 | /// or when setting [sizedByParent] to true without overriding |
2044 | /// [performResize]. This method should return the [Size] that this |
2045 | /// [RenderBox] would like to be given the provided [BoxConstraints]. |
2046 | /// |
2047 | /// The size returned by this method must match the [size] that the |
2048 | /// [RenderBox] will compute for itself in [performLayout] (or |
2049 | /// [performResize], if [sizedByParent] is true). |
2050 | /// |
2051 | /// If this algorithm depends on the size of a child, the size of that child |
2052 | /// should be obtained using its [getDryLayout] method. |
2053 | /// |
2054 | /// This layout is called "dry" layout as opposed to the regular "wet" layout |
2055 | /// run performed by [performLayout] because it computes the desired size for |
2056 | /// the given constraints without changing any internal state. |
2057 | /// |
2058 | /// ### When the size cannot be known |
2059 | /// |
2060 | /// There are cases where render objects do not have an efficient way to |
2061 | /// compute their size. For example, the size may computed by a callback about |
2062 | /// which the render object cannot reason. |
2063 | /// |
2064 | /// In such cases, it may be impossible (or at least impractical) to actually |
2065 | /// return a valid answer. In such cases, the function should call |
2066 | /// [debugCannotComputeDryLayout] from within an assert and return a dummy |
2067 | /// value of `const Size(0, 0)`. |
2068 | @visibleForOverriding |
2069 | @protected |
2070 | Size computeDryLayout(covariant BoxConstraints constraints) { |
2071 | assert( |
2072 | debugCannotComputeDryLayout( |
2073 | error: FlutterError.fromParts(<DiagnosticsNode>[ |
2074 | ErrorSummary( |
2075 | 'The${objectRuntimeType(this,'RenderBox')}class does not implement "computeDryLayout".', |
2076 | ), |
2077 | ErrorHint( |
2078 | 'If you are not writing your own RenderBox subclass, then this is not\n' |
2079 | 'your fault. Contact support: https://github.com/flutter/flutter/issues/new?template=02_bug.yml', |
2080 | ), |
2081 | ]), |
2082 | ), |
2083 | ); |
2084 | return Size.zero; |
2085 | } |
2086 | |
2087 | /// Returns the distance from the top of the box to the first baseline of the |
2088 | /// box's contents for the given `constraints`, or `null` if this [RenderBox] |
2089 | /// does not have any baselines. |
2090 | /// |
2091 | /// This method calls [computeDryBaseline] under the hood and caches the result. |
2092 | /// [RenderBox] subclasses typically don't overridden [getDryBaseline]. Instead, |
2093 | /// consider overriding [computeDryBaseline] such that it returns a baseline |
2094 | /// location that is consistent with [getDistanceToActualBaseline]. See the |
2095 | /// documentation for the [computeDryBaseline] method for more details. |
2096 | /// |
2097 | /// This method is usually called by the [computeDryBaseline] or the |
2098 | /// [computeDryLayout] implementation of a parent [RenderBox] to get the |
2099 | /// baseline location of a [RenderBox] child. Unlike [getDistanceToBaseline], |
2100 | /// this method takes a [BoxConstraints] as an argument and computes the |
2101 | /// baseline location as if the [RenderBox] was laid out by the parent using |
2102 | /// that [BoxConstraints]. |
2103 | /// |
2104 | /// The "dry" in the method name means this method, like [getDryLayout], has |
2105 | /// no observable side effects when called, as opposed to "wet" layout methods |
2106 | /// such as [performLayout] (which changes this [RenderBox]'s [size], and the |
2107 | /// offsets of its children if any). Since this method does not depend on the |
2108 | /// current layout, unlike [getDistanceToBaseline], it's ok to call this method |
2109 | /// when this [RenderBox]'s layout is outdated. |
2110 | /// |
2111 | /// Similar to the intrinsic width/height and [getDryLayout], calling this |
2112 | /// function in [performLayout] is expensive, as it can result in O(N^2) layout |
2113 | /// performance, where N is the number of render objects in the render subtree. |
2114 | /// Typically this method should be only called by the parent [RenderBox]'s |
2115 | /// [computeDryBaseline] or [computeDryLayout] implementation. |
2116 | double? getDryBaseline(covariant BoxConstraints constraints, TextBaseline baseline) { |
2117 | final double? baselineOffset = |
2118 | _computeIntrinsics(_CachedLayoutCalculation.baseline, ( |
2119 | constraints, |
2120 | baseline, |
2121 | ), _computeDryBaseline).offset; |
2122 | // This assert makes sure computeDryBaseline always gets called in debug mode, |
2123 | // in case the computeDryBaseline implementation invokes debugCannotComputeDryLayout. |
2124 | // This check should be skipped when debugCheckingIntrinsics is true to avoid |
2125 | // slowing down the app significantly. |
2126 | assert( |
2127 | RenderObject.debugCheckingIntrinsics || |
2128 | baselineOffset == computeDryBaseline(constraints, baseline), |
2129 | ); |
2130 | return baselineOffset; |
2131 | } |
2132 | |
2133 | bool _computingThisDryBaseline = false; |
2134 | BaselineOffset _computeDryBaseline((BoxConstraints, TextBaseline) pair) { |
2135 | assert(() { |
2136 | assert(!_computingThisDryBaseline); |
2137 | _computingThisDryBaseline = true; |
2138 | return true; |
2139 | }()); |
2140 | final BaselineOffset result = BaselineOffset(computeDryBaseline(pair.$1, pair.$2)); |
2141 | assert(() { |
2142 | assert(_computingThisDryBaseline); |
2143 | _computingThisDryBaseline = false; |
2144 | return true; |
2145 | }()); |
2146 | return result; |
2147 | } |
2148 | |
2149 | /// Computes the value returned by [getDryBaseline]. |
2150 | /// |
2151 | /// This method is for overriding only and shouldn't be called directly. To |
2152 | /// get this [RenderBox]'s speculative baseline location for the given |
2153 | /// `constraints`, call [getDryBaseline] instead. |
2154 | /// |
2155 | /// The "dry" in the method name means the implementation must not produce |
2156 | /// observable side effects when called. For example, it must not change the |
2157 | /// [size] of the [RenderBox], or its children's paint offsets, otherwise that |
2158 | /// would results in UI changes when [paint] is called, or hit-testing behavior |
2159 | /// changes when [hitTest] is called. Moreover, accessing the current layout |
2160 | /// of this [RenderBox] or child [RenderBox]es (including accessing [size], or |
2161 | /// `child.size`) usually indicates a bug in the implementation, as the current |
2162 | /// layout is typically calculated using a set of [BoxConstraints] that's |
2163 | /// different from the `constraints` given as the first parameter. To get the |
2164 | /// size of this [RenderBox] or a child [RenderBox] in this method's |
2165 | /// implementation, use the [getDryLayout] method instead. |
2166 | /// |
2167 | /// The implementation must return a value that represents the distance from |
2168 | /// the top of the box to the first baseline of the box's contents, for the |
2169 | /// given `constraints`, or `null` if the [RenderBox] has no baselines. It's |
2170 | /// the same exact value [RenderBox.computeDistanceToActualBaseline] would |
2171 | /// return, when this [RenderBox] was laid out at `constraints` in the same |
2172 | /// exact state. |
2173 | /// |
2174 | /// Not all [RenderBox]es support dry baseline computation. For example, to |
2175 | /// compute the dry baseline of a [LayoutBuilder], its `builder` may have to |
2176 | /// be called with different constraints, which may have side effects such as |
2177 | /// updating the widget tree, violating the "dry" contract. In such cases the |
2178 | /// [RenderBox] must call [debugCannotComputeDryLayout] in an assert, and |
2179 | /// return a dummy baseline offset value (such as `null`). |
2180 | @visibleForOverriding |
2181 | @protected |
2182 | double? computeDryBaseline(covariant BoxConstraints constraints, TextBaseline baseline) { |
2183 | assert( |
2184 | debugCannotComputeDryLayout( |
2185 | error: FlutterError.fromParts(<DiagnosticsNode>[ |
2186 | ErrorSummary( |
2187 | 'The${objectRuntimeType(this,'RenderBox')}class does not implement "computeDryBaseline".', |
2188 | ), |
2189 | ErrorHint( |
2190 | 'If you are not writing your own RenderBox subclass, then this is not\n' |
2191 | 'your fault. Contact support: https://github.com/flutter/flutter/issues/new?template=02_bug.yml', |
2192 | ), |
2193 | ]), |
2194 | ), |
2195 | ); |
2196 | return null; |
2197 | } |
2198 | |
2199 | static bool _debugDryLayoutCalculationValid = true; |
2200 | |
2201 | /// Called from [computeDryLayout] or [computeDryBaseline] within an assert if |
2202 | /// the given [RenderBox] subclass does not support calculating a dry layout. |
2203 | /// |
2204 | /// When asserts are enabled and [debugCheckingIntrinsics] is not true, this |
2205 | /// method will either throw the provided [FlutterError] or it will create and |
2206 | /// throw a [FlutterError] with the provided `reason`. Otherwise, it will |
2207 | /// return true. |
2208 | /// |
2209 | /// One of the arguments has to be provided. |
2210 | /// |
2211 | /// See also: |
2212 | /// |
2213 | /// * [computeDryLayout], which lists some reasons why it may not be feasible |
2214 | /// to compute the dry layout. |
2215 | bool debugCannotComputeDryLayout({String? reason, FlutterError? error}) { |
2216 | assert((reason == null) != (error == null)); |
2217 | assert(() { |
2218 | if (!RenderObject.debugCheckingIntrinsics) { |
2219 | if (reason != null) { |
2220 | assert(error == null); |
2221 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2222 | ErrorSummary( |
2223 | 'The${objectRuntimeType(this,'RenderBox')}class does not support dry layout.', |
2224 | ), |
2225 | if (reason.isNotEmpty) ErrorDescription(reason), |
2226 | ]); |
2227 | } |
2228 | assert(error != null); |
2229 | throw error!; |
2230 | } |
2231 | _debugDryLayoutCalculationValid = false; |
2232 | return true; |
2233 | }()); |
2234 | return true; |
2235 | } |
2236 | |
2237 | /// Whether this render object has undergone layout and has a [size]. |
2238 | bool get hasSize => _size != null; |
2239 | |
2240 | /// The size of this render box computed during layout. |
2241 | /// |
2242 | /// This value is stale whenever this object is marked as needing layout. |
2243 | /// During [performLayout], do not read the size of a child unless you pass |
2244 | /// true for parentUsesSize when calling the child's [layout] function. |
2245 | /// |
2246 | /// The size of a box should be set only during the box's [performLayout] or |
2247 | /// [performResize] functions. If you wish to change the size of a box outside |
2248 | /// of those functions, call [markNeedsLayout] instead to schedule a layout of |
2249 | /// the box. |
2250 | Size get size { |
2251 | assert(hasSize,'RenderBox was not laid out:$this'); |
2252 | assert(() { |
2253 | final Size? size = _size; |
2254 | if (size is _DebugSize) { |
2255 | assert(size._owner == this); |
2256 | final RenderObject? parent = this.parent; |
2257 | // Whether the size getter is accessed during layout (but not in a |
2258 | // layout callback). |
2259 | final bool doingRegularLayout = |
2260 | !(RenderObject.debugActiveLayout?.debugDoingThisLayoutWithCallback ?? true); |
2261 | final bool sizeAccessAllowed = |
2262 | !doingRegularLayout || |
2263 | debugDoingThisResize || |
2264 | debugDoingThisLayout || |
2265 | RenderObject.debugActiveLayout == parent && size._canBeUsedByParent; |
2266 | assert( |
2267 | sizeAccessAllowed, |
2268 | 'RenderBox.size accessed beyond the scope of resize, layout, or ' |
2269 | 'permitted parent access. RenderBox can always access its own size, ' |
2270 | 'otherwise, the only object that is allowed to read RenderBox.size ' |
2271 | 'is its parent, if they have said they will. It you hit this assert ' |
2272 | 'trying to access a child\'s size, pass "parentUsesSize: true" to ' |
2273 | "that child's layout() in${objectRuntimeType(this,'RenderBox')}.performLayout.", |
2274 | ); |
2275 | final RenderBox? renderBoxDoingDryLayout = |
2276 | _computingThisDryLayout |
2277 | ? this |
2278 | : (parent is RenderBox && parent._computingThisDryLayout ? parent : null); |
2279 | |
2280 | assert( |
2281 | renderBoxDoingDryLayout == null, |
2282 | 'RenderBox.size accessed in ' |
2283 | '${objectRuntimeType(renderBoxDoingDryLayout,'RenderBox')}.computeDryLayout. ' |
2284 | "The computeDryLayout method must not access the RenderBox's own size, or the size of its child, " |
2285 | "because it's established in performLayout or performResize using different BoxConstraints.", |
2286 | ); |
2287 | |
2288 | final RenderBox? renderBoxDoingDryBaseline = |
2289 | _computingThisDryBaseline |
2290 | ? this |
2291 | : (parent is RenderBox && parent._computingThisDryBaseline ? parent : null); |
2292 | assert( |
2293 | renderBoxDoingDryBaseline == null, |
2294 | |
2295 | 'RenderBox.size accessed in ' |
2296 | '${objectRuntimeType(renderBoxDoingDryBaseline,'RenderBox')}.computeDryBaseline. ' |
2297 | "The computeDryBaseline method must not access the RenderBox's own size, or the size of its child, " |
2298 | "because it's established in performLayout or performResize using different BoxConstraints.", |
2299 | ); |
2300 | assert(size == _size); |
2301 | } |
2302 | return true; |
2303 | }()); |
2304 | return _size ?? |
2305 | (throw StateError('RenderBox was not laid out:$runtimeType#${shortHash(this)}')); |
2306 | } |
2307 | |
2308 | Size? _size; |
2309 | |
2310 | /// Setting the size, in debug mode, triggers some analysis of the render box, |
2311 | /// as implemented by [debugAssertDoesMeetConstraints], including calling the intrinsic |
2312 | /// sizing methods and checking that they meet certain invariants. |
2313 | @protected |
2314 | set size(Size value) { |
2315 | assert(!(debugDoingThisResize && debugDoingThisLayout)); |
2316 | assert(sizedByParent || !debugDoingThisResize); |
2317 | assert(() { |
2318 | if ((sizedByParent && debugDoingThisResize) || (!sizedByParent && debugDoingThisLayout)) { |
2319 | return true; |
2320 | } |
2321 | assert(!debugDoingThisResize); |
2322 | final List<DiagnosticsNode> information = <DiagnosticsNode>[ |
2323 | ErrorSummary('RenderBox size setter called incorrectly.'), |
2324 | ]; |
2325 | if (debugDoingThisLayout) { |
2326 | assert(sizedByParent); |
2327 | information.add( |
2328 | ErrorDescription('It appears that the size setter was called from performLayout().'), |
2329 | ); |
2330 | } else { |
2331 | information.add( |
2332 | ErrorDescription( |
2333 | 'The size setter was called from outside layout (neither performResize() nor performLayout() were being run for this object).', |
2334 | ), |
2335 | ); |
2336 | if (owner != null && owner!.debugDoingLayout) { |
2337 | information.add( |
2338 | ErrorDescription( |
2339 | 'Only the object itself can set its size. It is a contract violation for other objects to set it.', |
2340 | ), |
2341 | ); |
2342 | } |
2343 | } |
2344 | if (sizedByParent) { |
2345 | information.add( |
2346 | ErrorDescription( |
2347 | 'Because this RenderBox has sizedByParent set to true, it must set its size in performResize().', |
2348 | ), |
2349 | ); |
2350 | } else { |
2351 | information.add( |
2352 | ErrorDescription( |
2353 | 'Because this RenderBox has sizedByParent set to false, it must set its size in performLayout().', |
2354 | ), |
2355 | ); |
2356 | } |
2357 | throw FlutterError.fromParts(information); |
2358 | }()); |
2359 | assert(() { |
2360 | value = debugAdoptSize(value); |
2361 | return true; |
2362 | }()); |
2363 | _size = value; |
2364 | assert(() { |
2365 | debugAssertDoesMeetConstraints(); |
2366 | return true; |
2367 | }()); |
2368 | } |
2369 | |
2370 | /// Claims ownership of the given [Size]. |
2371 | /// |
2372 | /// In debug mode, the [RenderBox] class verifies that [Size] objects obtained |
2373 | /// from other [RenderBox] objects are only used according to the semantics of |
2374 | /// the [RenderBox] protocol, namely that a [Size] from a [RenderBox] can only |
2375 | /// be used by its parent, and then only if `parentUsesSize` was set. |
2376 | /// |
2377 | /// Sometimes, a [Size] that can validly be used ends up no longer being valid |
2378 | /// over time. The common example is a [Size] taken from a child that is later |
2379 | /// removed from the parent. In such cases, this method can be called to first |
2380 | /// check whether the size can legitimately be used, and if so, to then create |
2381 | /// a new [Size] that can be used going forward, regardless of what happens to |
2382 | /// the original owner. |
2383 | Size debugAdoptSize(Size value) { |
2384 | Size result = value; |
2385 | assert(() { |
2386 | if (value is _DebugSize) { |
2387 | if (value._owner != this) { |
2388 | if (value._owner.parent != this) { |
2389 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2390 | ErrorSummary('The size property was assigned a size inappropriately.'), |
2391 | describeForError('The following render object'), |
2392 | value._owner.describeForError('...was assigned a size obtained from'), |
2393 | ErrorDescription( |
2394 | 'However, this second render object is not, or is no longer, a ' |
2395 | 'child of the first, and it is therefore a violation of the ' |
2396 | 'RenderBox layout protocol to use that size in the layout of the ' |
2397 | 'first render object.', |
2398 | ), |
2399 | ErrorHint( |
2400 | 'If the size was obtained at a time where it was valid to read ' |
2401 | 'the size (because the second render object above was a child ' |
2402 | 'of the first at the time), then it should be adopted using ' |
2403 | 'debugAdoptSize at that time.', |
2404 | ), |
2405 | ErrorHint( |
2406 | 'If the size comes from a grandchild or a render object from an ' |
2407 | 'entirely different part of the render tree, then there is no ' |
2408 | 'way to be notified when the size changes and therefore attempts ' |
2409 | 'to read that size are almost certainly a source of bugs. A different ' |
2410 | 'approach should be used.', |
2411 | ), |
2412 | ]); |
2413 | } |
2414 | if (!value._canBeUsedByParent) { |
2415 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2416 | ErrorSummary("A child's size was used without setting parentUsesSize."), |
2417 | describeForError('The following render object'), |
2418 | value._owner.describeForError('...was assigned a size obtained from its child'), |
2419 | ErrorDescription( |
2420 | 'However, when the child was laid out, the parentUsesSize argument ' |
2421 | 'was not set or set to false. Subsequently this transpired to be ' |
2422 | 'inaccurate: the size was nonetheless used by the parent.\n' |
2423 | 'It is important to tell the framework if the size will be used or not ' |
2424 | 'as several important performance optimizations can be made if the ' |
2425 | 'size will not be used by the parent.', |
2426 | ), |
2427 | ]); |
2428 | } |
2429 | } |
2430 | } |
2431 | result = _DebugSize(value, this, debugCanParentUseSize); |
2432 | return true; |
2433 | }()); |
2434 | return result; |
2435 | } |
2436 | |
2437 | @override |
2438 | Rect get semanticBounds => Offset.zero & size; |
2439 | |
2440 | @override |
2441 | void debugResetSize() { |
2442 | // updates the value of size._canBeUsedByParent if necessary |
2443 | size = size; // ignore: no_self_assignments |
2444 | } |
2445 | |
2446 | static bool _debugDoingBaseline = false; |
2447 | static bool _debugSetDoingBaseline(bool value) { |
2448 | _debugDoingBaseline = value; |
2449 | return true; |
2450 | } |
2451 | |
2452 | /// Returns the distance from the y-coordinate of the position of the box to |
2453 | /// the y-coordinate of the first given baseline in the box's contents. |
2454 | /// |
2455 | /// Used by certain layout models to align adjacent boxes on a common |
2456 | /// baseline, regardless of padding, font size differences, etc. If there is |
2457 | /// no baseline, this function returns the distance from the y-coordinate of |
2458 | /// the position of the box to the y-coordinate of the bottom of the box |
2459 | /// (i.e., the height of the box) unless the caller passes true |
2460 | /// for `onlyReal`, in which case the function returns null. |
2461 | /// |
2462 | /// Only call this function after calling [layout] on this box. You |
2463 | /// are only allowed to call this from the parent of this box during |
2464 | /// that parent's [performLayout] or [paint] functions. |
2465 | /// |
2466 | /// When implementing a [RenderBox] subclass, to override the baseline |
2467 | /// computation, override [computeDistanceToActualBaseline]. |
2468 | /// |
2469 | /// See also: |
2470 | /// |
2471 | /// * [getDryBaseline], which returns the baseline location of this |
2472 | /// [RenderBox] at a certain [BoxConstraints]. |
2473 | double? getDistanceToBaseline(TextBaseline baseline, {bool onlyReal = false}) { |
2474 | assert( |
2475 | !_debugDoingBaseline, |
2476 | 'Please see the documentation for computeDistanceToActualBaseline for the required calling conventions of this method.', |
2477 | ); |
2478 | assert(!debugNeedsLayout || RenderObject.debugCheckingIntrinsics); |
2479 | assert( |
2480 | RenderObject.debugCheckingIntrinsics || |
2481 | switch (owner!) { |
2482 | PipelineOwner(debugDoingLayout: true) => |
2483 | RenderObject.debugActiveLayout == parent && parent!.debugDoingThisLayout, |
2484 | PipelineOwner(debugDoingPaint: true) => |
2485 | RenderObject.debugActivePaint == parent && parent!.debugDoingThisPaint || |
2486 | (RenderObject.debugActivePaint == this && debugDoingThisPaint), |
2487 | PipelineOwner() => false, |
2488 | }, |
2489 | ); |
2490 | assert(_debugSetDoingBaseline(true)); |
2491 | final double? result; |
2492 | try { |
2493 | result = getDistanceToActualBaseline(baseline); |
2494 | } finally { |
2495 | assert(_debugSetDoingBaseline(false)); |
2496 | } |
2497 | if (result == null && !onlyReal) { |
2498 | return size.height; |
2499 | } |
2500 | return result; |
2501 | } |
2502 | |
2503 | /// Calls [computeDistanceToActualBaseline] and caches the result. |
2504 | /// |
2505 | /// This function must only be called from [getDistanceToBaseline] and |
2506 | /// [computeDistanceToActualBaseline]. Do not call this function directly from |
2507 | /// outside those two methods. |
2508 | @protected |
2509 | @mustCallSuper |
2510 | double? getDistanceToActualBaseline(TextBaseline baseline) { |
2511 | assert( |
2512 | _debugDoingBaseline, |
2513 | 'Please see the documentation for computeDistanceToActualBaseline for the required calling conventions of this method.', |
2514 | ); |
2515 | return _computeIntrinsics( |
2516 | _CachedLayoutCalculation.baseline, |
2517 | (constraints, baseline), |
2518 | ((BoxConstraints, TextBaseline) pair) => |
2519 | BaselineOffset(computeDistanceToActualBaseline(pair.$2)), |
2520 | ).offset; |
2521 | } |
2522 | |
2523 | /// Returns the distance from the y-coordinate of the position of the box to |
2524 | /// the y-coordinate of the first given baseline in the box's contents, if |
2525 | /// any, or null otherwise. |
2526 | /// |
2527 | /// Do not call this function directly. If you need to know the baseline of a |
2528 | /// child from an invocation of [performLayout] or [paint], call |
2529 | /// [getDistanceToBaseline]. |
2530 | /// |
2531 | /// Subclasses should override this method to supply the distances to their |
2532 | /// baselines. When implementing this method, there are generally three |
2533 | /// strategies: |
2534 | /// |
2535 | /// * For classes that use the [ContainerRenderObjectMixin] child model, |
2536 | /// consider mixing in the [RenderBoxContainerDefaultsMixin] class and |
2537 | /// using |
2538 | /// [RenderBoxContainerDefaultsMixin.defaultComputeDistanceToFirstActualBaseline]. |
2539 | /// |
2540 | /// * For classes that define a particular baseline themselves, return that |
2541 | /// value directly. |
2542 | /// |
2543 | /// * For classes that have a child to which they wish to defer the |
2544 | /// computation, call [getDistanceToActualBaseline] on the child (not |
2545 | /// [computeDistanceToActualBaseline], the internal implementation, and not |
2546 | /// [getDistanceToBaseline], the public entry point for this API). |
2547 | @visibleForOverriding |
2548 | @protected |
2549 | double? computeDistanceToActualBaseline(TextBaseline baseline) { |
2550 | assert( |
2551 | _debugDoingBaseline, |
2552 | 'Please see the documentation for computeDistanceToActualBaseline for the required calling conventions of this method.', |
2553 | ); |
2554 | return null; |
2555 | } |
2556 | |
2557 | /// The box constraints most recently received from the parent. |
2558 | @override |
2559 | BoxConstraints get constraints => super.constraints as BoxConstraints; |
2560 | |
2561 | @override |
2562 | void debugAssertDoesMeetConstraints() { |
2563 | assert(() { |
2564 | if (!hasSize) { |
2565 | final DiagnosticsNode contract; |
2566 | if (sizedByParent) { |
2567 | contract = ErrorDescription( |
2568 | 'Because this RenderBox has sizedByParent set to true, it must set its size in performResize().', |
2569 | ); |
2570 | } else { |
2571 | contract = ErrorDescription( |
2572 | 'Because this RenderBox has sizedByParent set to false, it must set its size in performLayout().', |
2573 | ); |
2574 | } |
2575 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2576 | ErrorSummary('RenderBox did not set its size during layout.'), |
2577 | contract, |
2578 | ErrorDescription( |
2579 | 'It appears that this did not happen; layout completed, but the size property is still null.', |
2580 | ), |
2581 | DiagnosticsProperty<RenderBox>( |
2582 | 'The RenderBox in question is', |
2583 | this, |
2584 | style: DiagnosticsTreeStyle.errorProperty, |
2585 | ), |
2586 | ]); |
2587 | } |
2588 | // verify that the size is not infinite |
2589 | if (!_size!.isFinite) { |
2590 | final List<DiagnosticsNode> information = <DiagnosticsNode>[ |
2591 | ErrorSummary('$runtimeTypeobject was given an infinite size during layout.'), |
2592 | ErrorDescription( |
2593 | 'This probably means that it is a render object that tries to be ' |
2594 | 'as big as possible, but it was put inside another render object ' |
2595 | 'that allows its children to pick their own size.', |
2596 | ), |
2597 | ]; |
2598 | if (!constraints.hasBoundedWidth) { |
2599 | RenderBox node = this; |
2600 | while (!node.constraints.hasBoundedWidth && node.parent is RenderBox) { |
2601 | node = node.parent! as RenderBox; |
2602 | } |
2603 | |
2604 | information.add( |
2605 | node.describeForError( |
2606 | 'The nearest ancestor providing an unbounded width constraint is', |
2607 | ), |
2608 | ); |
2609 | } |
2610 | if (!constraints.hasBoundedHeight) { |
2611 | RenderBox node = this; |
2612 | while (!node.constraints.hasBoundedHeight && node.parent is RenderBox) { |
2613 | node = node.parent! as RenderBox; |
2614 | } |
2615 | |
2616 | information.add( |
2617 | node.describeForError( |
2618 | 'The nearest ancestor providing an unbounded height constraint is', |
2619 | ), |
2620 | ); |
2621 | } |
2622 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2623 | ...information, |
2624 | DiagnosticsProperty<BoxConstraints>( |
2625 | 'The constraints that applied to the$runtimeTypewere', |
2626 | constraints, |
2627 | style: DiagnosticsTreeStyle.errorProperty, |
2628 | ), |
2629 | DiagnosticsProperty<Size>( |
2630 | 'The exact size it was given was', |
2631 | _size, |
2632 | style: DiagnosticsTreeStyle.errorProperty, |
2633 | ), |
2634 | ErrorHint('See https://flutter.dev/to/unbounded-constraints for more information.'), |
2635 | ]); |
2636 | } |
2637 | // verify that the size is within the constraints |
2638 | if (!constraints.isSatisfiedBy(_size!)) { |
2639 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2640 | ErrorSummary('$runtimeTypedoes not meet its constraints.'), |
2641 | DiagnosticsProperty<BoxConstraints>( |
2642 | 'Constraints', |
2643 | constraints, |
2644 | style: DiagnosticsTreeStyle.errorProperty, |
2645 | ), |
2646 | DiagnosticsProperty<Size>('Size', _size, style: DiagnosticsTreeStyle.errorProperty), |
2647 | ErrorHint( |
2648 | 'If you are not writing your own RenderBox subclass, then this is not ' |
2649 | 'your fault. Contact support: https://github.com/flutter/flutter/issues/new?template=02_bug.yml', |
2650 | ), |
2651 | ]); |
2652 | } |
2653 | if (debugCheckIntrinsicSizes) { |
2654 | // verify that the intrinsics are sane |
2655 | assert(!RenderObject.debugCheckingIntrinsics); |
2656 | RenderObject.debugCheckingIntrinsics = true; |
2657 | final List<DiagnosticsNode> failures = <DiagnosticsNode>[]; |
2658 | |
2659 | double testIntrinsic( |
2660 | double Function(double extent) function, |
2661 | String name, |
2662 | double constraint, |
2663 | ) { |
2664 | final double result = function(constraint); |
2665 | if (result < 0) { |
2666 | failures.add( |
2667 | ErrorDescription(' *$name($constraint) returned a negative value:$result'), |
2668 | ); |
2669 | } |
2670 | if (!result.isFinite) { |
2671 | failures.add( |
2672 | ErrorDescription(' *$name($constraint) returned a non-finite value:$result'), |
2673 | ); |
2674 | } |
2675 | return result; |
2676 | } |
2677 | |
2678 | void testIntrinsicsForValues( |
2679 | double Function(double extent) getMin, |
2680 | double Function(double extent) getMax, |
2681 | String name, |
2682 | double constraint, |
2683 | ) { |
2684 | final double min = testIntrinsic(getMin,'getMinIntrinsic$name', constraint); |
2685 | final double max = testIntrinsic(getMax,'getMaxIntrinsic$name', constraint); |
2686 | if (min > max) { |
2687 | failures.add( |
2688 | ErrorDescription( |
2689 | ' * getMinIntrinsic$name($constraint) returned a larger value ($min) than getMaxIntrinsic$name($constraint) ($max)', |
2690 | ), |
2691 | ); |
2692 | } |
2693 | } |
2694 | |
2695 | try { |
2696 | testIntrinsicsForValues( |
2697 | getMinIntrinsicWidth, |
2698 | getMaxIntrinsicWidth, |
2699 | 'Width', |
2700 | double.infinity, |
2701 | ); |
2702 | testIntrinsicsForValues( |
2703 | getMinIntrinsicHeight, |
2704 | getMaxIntrinsicHeight, |
2705 | 'Height', |
2706 | double.infinity, |
2707 | ); |
2708 | if (constraints.hasBoundedWidth) { |
2709 | testIntrinsicsForValues( |
2710 | getMinIntrinsicWidth, |
2711 | getMaxIntrinsicWidth, |
2712 | 'Width', |
2713 | constraints.maxHeight, |
2714 | ); |
2715 | } |
2716 | if (constraints.hasBoundedHeight) { |
2717 | testIntrinsicsForValues( |
2718 | getMinIntrinsicHeight, |
2719 | getMaxIntrinsicHeight, |
2720 | 'Height', |
2721 | constraints.maxWidth, |
2722 | ); |
2723 | } |
2724 | // TODO(ianh): Test that values are internally consistent in more ways than the above. |
2725 | } finally { |
2726 | RenderObject.debugCheckingIntrinsics = false; |
2727 | } |
2728 | |
2729 | if (failures.isNotEmpty) { |
2730 | // TODO(jacobr): consider nesting the failures object so it is collapsible. |
2731 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2732 | ErrorSummary( |
2733 | 'The intrinsic dimension methods of the$runtimeTypeclass returned values that violate the intrinsic protocol contract.', |
2734 | ), |
2735 | ErrorDescription( |
2736 | 'The following${failures.length > 1 ?"failures":"failure"}was detected:', |
2737 | ), // should this be tagged as an error or not? |
2738 | ...failures, |
2739 | ErrorHint( |
2740 | 'If you are not writing your own RenderBox subclass, then this is not\n' |
2741 | 'your fault. Contact support: https://github.com/flutter/flutter/issues/new?template=02_bug.yml', |
2742 | ), |
2743 | ]); |
2744 | } |
2745 | |
2746 | // Checking that getDryLayout computes the same size. |
2747 | _debugDryLayoutCalculationValid = true; |
2748 | RenderObject.debugCheckingIntrinsics = true; |
2749 | final Size dryLayoutSize; |
2750 | try { |
2751 | dryLayoutSize = getDryLayout(constraints); |
2752 | } finally { |
2753 | RenderObject.debugCheckingIntrinsics = false; |
2754 | } |
2755 | if (_debugDryLayoutCalculationValid && dryLayoutSize != _size) { |
2756 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2757 | ErrorSummary( |
2758 | 'The size given to the${objectRuntimeType(this,'RenderBox')}class differs from the size computed by computeDryLayout.', |
2759 | ), |
2760 | ErrorDescription( |
2761 | 'The size computed in${sizedByParent ?'performResize':'performLayout'}' |
2762 | 'is$size, which is different from$dryLayoutSize, which was computed by computeDryLayout.', |
2763 | ), |
2764 | ErrorDescription('The constraints used were$constraints.'), |
2765 | ErrorHint( |
2766 | 'If you are not writing your own RenderBox subclass, then this is not\n' |
2767 | 'your fault. Contact support: https://github.com/flutter/flutter/issues/new?template=02_bug.yml', |
2768 | ), |
2769 | ]); |
2770 | } |
2771 | } |
2772 | return true; |
2773 | }()); |
2774 | } |
2775 | |
2776 | void _debugVerifyDryBaselines() { |
2777 | assert(() { |
2778 | final List<DiagnosticsNode> messages = <DiagnosticsNode>[ |
2779 | ErrorDescription('The constraints used were$constraints.'), |
2780 | ErrorHint( |
2781 | 'If you are not writing your own RenderBox subclass, then this is not\n' |
2782 | 'your fault. Contact support: https://github.com/flutter/flutter/issues/new?template=02_bug.yml', |
2783 | ), |
2784 | ]; |
2785 | |
2786 | for (final TextBaseline baseline in TextBaseline.values) { |
2787 | assert(!RenderObject.debugCheckingIntrinsics); |
2788 | RenderObject.debugCheckingIntrinsics = true; |
2789 | _debugDryLayoutCalculationValid = true; |
2790 | final double? dryBaseline; |
2791 | final double? realBaseline; |
2792 | try { |
2793 | dryBaseline = getDryBaseline(constraints, baseline); |
2794 | realBaseline = getDistanceToBaseline(baseline, onlyReal: true); |
2795 | } finally { |
2796 | RenderObject.debugCheckingIntrinsics = false; |
2797 | } |
2798 | assert(!RenderObject.debugCheckingIntrinsics); |
2799 | if (!_debugDryLayoutCalculationValid || dryBaseline == realBaseline) { |
2800 | continue; |
2801 | } |
2802 | if ((dryBaseline == null) != (realBaseline == null)) { |
2803 | final (String methodReturnedNull, String methodReturnedNonNull) = |
2804 | dryBaseline == null |
2805 | ? ('computeDryBaseline','computeDistanceToActualBaseline') |
2806 | : ('computeDistanceToActualBaseline','computeDryBaseline'); |
2807 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2808 | ErrorSummary( |
2809 | 'The$baselinelocation returned by${objectRuntimeType(this,'RenderBox')}.computeDistanceToActualBaseline ' |
2810 | 'differs from the baseline location computed by computeDryBaseline.', |
2811 | ), |
2812 | ErrorDescription( |
2813 | 'The$methodReturnedNullmethod returned null while the$methodReturnedNonNullreturned a non-null$baselineof${dryBaseline ?? realBaseline}. ' |
2814 | 'Did you forget to implement$methodReturnedNullfor${objectRuntimeType(this,'RenderBox')}?', |
2815 | ), |
2816 | ...messages, |
2817 | ]); |
2818 | } else { |
2819 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2820 | ErrorSummary( |
2821 | 'The$baselinelocation returned by${objectRuntimeType(this,'RenderBox')}.computeDistanceToActualBaseline ' |
2822 | 'differs from the baseline location computed by computeDryBaseline.', |
2823 | ), |
2824 | DiagnosticsProperty<RenderObject>('The RenderBox was', this), |
2825 | ErrorDescription( |
2826 | 'The computeDryBaseline method returned$dryBaseline,\n' |
2827 | 'while the computeDistanceToActualBaseline method returned$realBaseline.\n' |
2828 | 'Consider checking the implementations of the following methods on the${objectRuntimeType(this,'RenderBox')}class and make sure they are consistent:\n' |
2829 | ' * computeDistanceToActualBaseline\n' |
2830 | ' * computeDryBaseline\n' |
2831 | ' * performLayout\n', |
2832 | ), |
2833 | ...messages, |
2834 | ]); |
2835 | } |
2836 | } |
2837 | return true; |
2838 | }()); |
2839 | } |
2840 | |
2841 | @override |
2842 | void markNeedsLayout() { |
2843 | // If `_layoutCacheStorage.clear` returns true, then this [RenderBox]'s layout |
2844 | // is used by the parent's layout algorithm (it's possible that the parent |
2845 | // only used the intrinsics for paint, but there's no good way to detect that |
2846 | // so we conservatively assume it's a layout dependency). |
2847 | // |
2848 | // A render object's performLayout implementation may depend on the baseline |
2849 | // location or the intrinsic dimensions of a descendant, even when there are |
2850 | // relayout boundaries between them. The `_layoutCacheStorage` being non-empty |
2851 | // indicates that the parent depended on this RenderBox's baseline location, |
2852 | // or intrinsic sizes, and thus may need relayout, regardless of relayout |
2853 | // boundaries. |
2854 | // |
2855 | // Some calculations may fail (dry baseline, for example). The layout |
2856 | // dependency is still established, but only from the RenderBox that failed |
2857 | // to compute the dry baseline to the ancestor that queried the dry baseline. |
2858 | if (_layoutCacheStorage.clear() && parent != null) { |
2859 | markParentNeedsLayout(); |
2860 | return; |
2861 | } |
2862 | super.markNeedsLayout(); |
2863 | } |
2864 | |
2865 | /// {@macro flutter.rendering.RenderObject.performResize} |
2866 | /// |
2867 | /// By default this method sets [size] to the result of [computeDryLayout] |
2868 | /// called with the current [constraints]. Instead of overriding this method, |
2869 | /// consider overriding [computeDryLayout]. |
2870 | @override |
2871 | void performResize() { |
2872 | // default behavior for subclasses that have sizedByParent = true |
2873 | size = computeDryLayout(constraints); |
2874 | assert(size.isFinite); |
2875 | } |
2876 | |
2877 | @override |
2878 | void performLayout() { |
2879 | assert(() { |
2880 | if (!sizedByParent) { |
2881 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2882 | ErrorSummary('$runtimeTypedid not implement performLayout().'), |
2883 | ErrorHint( |
2884 | 'RenderBox subclasses need to either override performLayout() to ' |
2885 | 'set a size and lay out any children, or, set sizedByParent to true ' |
2886 | 'so that performResize() sizes the render object.', |
2887 | ), |
2888 | ]); |
2889 | } |
2890 | return true; |
2891 | }()); |
2892 | } |
2893 | |
2894 | /// Determines the set of render objects located at the given position. |
2895 | /// |
2896 | /// Returns true, and adds any render objects that contain the point to the |
2897 | /// given hit test result, if this render object or one of its descendants |
2898 | /// absorbs the hit (preventing objects below this one from being hit). |
2899 | /// Returns false if the hit can continue to other objects below this one. |
2900 | /// |
2901 | /// The caller is responsible for transforming [position] from global |
2902 | /// coordinates to its location relative to the origin of this [RenderBox]. |
2903 | /// This [RenderBox] is responsible for checking whether the given position is |
2904 | /// within its bounds. |
2905 | /// |
2906 | /// If transforming is necessary, [BoxHitTestResult.addWithPaintTransform], |
2907 | /// [BoxHitTestResult.addWithPaintOffset], or |
2908 | /// [BoxHitTestResult.addWithRawTransform] need to be invoked by the caller |
2909 | /// to record the required transform operations in the [HitTestResult]. These |
2910 | /// methods will also help with applying the transform to `position`. |
2911 | /// |
2912 | /// Hit testing requires layout to be up-to-date but does not require painting |
2913 | /// to be up-to-date. That means a render object can rely upon [performLayout] |
2914 | /// having been called in [hitTest] but cannot rely upon [paint] having been |
2915 | /// called. For example, a render object might be a child of a [RenderOpacity] |
2916 | /// object, which calls [hitTest] on its children when its opacity is zero |
2917 | /// even though it does not [paint] its children. |
2918 | bool hitTest(BoxHitTestResult result, {required Offset position}) { |
2919 | assert(() { |
2920 | if (!hasSize) { |
2921 | if (debugNeedsLayout) { |
2922 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2923 | ErrorSummary('Cannot hit test a render box that has never been laid out.'), |
2924 | describeForError('The hitTest() method was called on this RenderBox'), |
2925 | ErrorDescription( |
2926 | "Unfortunately, this object's geometry is not known at this time, " |
2927 | 'probably because it has never been laid out. ' |
2928 | 'This means it cannot be accurately hit-tested.', |
2929 | ), |
2930 | ErrorHint( |
2931 | 'If you are trying ' |
2932 | 'to perform a hit test during the layout phase itself, make sure ' |
2933 | "you only hit test nodes that have completed layout (e.g. the node's " |
2934 | 'children, after their layout() method has been called).', |
2935 | ), |
2936 | ]); |
2937 | } |
2938 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
2939 | ErrorSummary('Cannot hit test a render box with no size.'), |
2940 | describeForError('The hitTest() method was called on this RenderBox'), |
2941 | ErrorDescription( |
2942 | 'Although this node is not marked as needing layout, ' |
2943 | 'its size is not set.', |
2944 | ), |
2945 | ErrorHint( |
2946 | 'A RenderBox object must have an ' |
2947 | 'explicit size before it can be hit-tested. Make sure ' |
2948 | 'that the RenderBox in question sets its size during layout.', |
2949 | ), |
2950 | ]); |
2951 | } |
2952 | return true; |
2953 | }()); |
2954 | if (_size!.contains(position)) { |
2955 | if (hitTestChildren(result, position: position) || hitTestSelf(position)) { |
2956 | result.add(BoxHitTestEntry(this, position)); |
2957 | return true; |
2958 | } |
2959 | } |
2960 | return false; |
2961 | } |
2962 | |
2963 | /// Override this method if this render object can be hit even if its |
2964 | /// children were not hit. |
2965 | /// |
2966 | /// Returns true if the specified `position` should be considered a hit |
2967 | /// on this render object. |
2968 | /// |
2969 | /// The caller is responsible for transforming [position] from global |
2970 | /// coordinates to its location relative to the origin of this [RenderBox]. |
2971 | /// This [RenderBox] is responsible for checking whether the given position is |
2972 | /// within its bounds. |
2973 | /// |
2974 | /// Used by [hitTest]. If you override [hitTest] and do not call this |
2975 | /// function, then you don't need to implement this function. |
2976 | @protected |
2977 | bool hitTestSelf(Offset position) => false; |
2978 | |
2979 | /// Override this method to check whether any children are located at the |
2980 | /// given position. |
2981 | /// |
2982 | /// Subclasses should return true if at least one child reported a hit at the |
2983 | /// specified position. |
2984 | /// |
2985 | /// Typically children should be hit-tested in reverse paint order so that |
2986 | /// hit tests at locations where children overlap hit the child that is |
2987 | /// visually "on top" (i.e., paints later). |
2988 | /// |
2989 | /// The caller is responsible for transforming [position] from global |
2990 | /// coordinates to its location relative to the origin of this [RenderBox]. |
2991 | /// Likewise, this [RenderBox] is responsible for transforming the position |
2992 | /// that it passes to its children when it calls [hitTest] on each child. |
2993 | /// |
2994 | /// If transforming is necessary, [BoxHitTestResult.addWithPaintTransform], |
2995 | /// [BoxHitTestResult.addWithPaintOffset], or |
2996 | /// [BoxHitTestResult.addWithRawTransform] need to be invoked by subclasses to |
2997 | /// record the required transform operations in the [BoxHitTestResult]. These |
2998 | /// methods will also help with applying the transform to `position`. |
2999 | /// |
3000 | /// Used by [hitTest]. If you override [hitTest] and do not call this |
3001 | /// function, then you don't need to implement this function. |
3002 | @protected |
3003 | bool hitTestChildren(BoxHitTestResult result, {required Offset position}) => false; |
3004 | |
3005 | /// Multiply the transform from the parent's coordinate system to this box's |
3006 | /// coordinate system into the given transform. |
3007 | /// |
3008 | /// This function is used to convert coordinate systems between boxes. |
3009 | /// Subclasses that apply transforms during painting should override this |
3010 | /// function to factor those transforms into the calculation. |
3011 | /// |
3012 | /// The [RenderBox] implementation takes care of adjusting the matrix for the |
3013 | /// position of the given child as determined during layout and stored on the |
3014 | /// child's [parentData] in the [BoxParentData.offset] field. |
3015 | @override |
3016 | void applyPaintTransform(RenderObject child, Matrix4 transform) { |
3017 | assert(child.parent == this); |
3018 | assert(() { |
3019 | if (child.parentData is! BoxParentData) { |
3020 | throw FlutterError.fromParts(<DiagnosticsNode>[ |
3021 | ErrorSummary('$runtimeTypedoes not implement applyPaintTransform.'), |
3022 | describeForError('The following$runtimeTypeobject'), |
3023 | child.describeForError( |
3024 | '...did not use a BoxParentData class for the parentData field of the following child', |
3025 | ), |
3026 | ErrorDescription('The$runtimeTypeclass inherits from RenderBox.'), |
3027 | ErrorHint( |
3028 | 'The default applyPaintTransform implementation provided by RenderBox assumes that the ' |
3029 | 'children all use BoxParentData objects for their parentData field. ' |
3030 | 'Since$runtimeTypedoes not in fact use that ParentData class for its children, it must ' |
3031 | 'provide an implementation of applyPaintTransform that supports the specific ParentData ' |
3032 | 'subclass used by its children (which apparently is${child.parentData.runtimeType}).', |
3033 | ), |
3034 | ]); |
3035 | } |
3036 | return true; |
3037 | }()); |
3038 | final BoxParentData childParentData = child.parentData! as BoxParentData; |
3039 | final Offset offset = childParentData.offset; |
3040 | transform.translate(offset.dx, offset.dy); |
3041 | } |
3042 | |
3043 | /// Convert the given point from the global coordinate system in logical pixels |
3044 | /// to the local coordinate system for this box. |
3045 | /// |
3046 | /// This method will un-project the point from the screen onto the widget, |
3047 | /// which makes it different from [MatrixUtils.transformPoint]. |
3048 | /// |
3049 | /// If the transform from global coordinates to local coordinates is |
3050 | /// degenerate, this function returns [Offset.zero]. |
3051 | /// |
3052 | /// If `ancestor` is non-null, this function converts the given point from the |
3053 | /// coordinate system of `ancestor` (which must be an ancestor of this render |
3054 | /// object) instead of from the global coordinate system. |
3055 | /// |
3056 | /// This method is implemented in terms of [getTransformTo]. |
3057 | Offset globalToLocal(Offset point, {RenderObject? ancestor}) { |
3058 | // We want to find point (p) that corresponds to a given point on the |
3059 | // screen (s), but that also physically resides on the local render plane, |
3060 | // so that it is useful for visually accurate gesture processing in the |
3061 | // local space. For that, we can't simply transform 2D screen point to |
3062 | // the 3D local space since the screen space lacks the depth component |z|, |
3063 | // and so there are many 3D points that correspond to the screen point. |
3064 | // We must first unproject the screen point onto the render plane to find |
3065 | // the true 3D point that corresponds to the screen point. |
3066 | // We do orthogonal unprojection after undoing perspective, in local space. |
3067 | // The render plane is specified by renderBox offset (o) and Z axis (n). |
3068 | // Unprojection is done by finding the intersection of the view vector (d) |
3069 | // with the local X-Y plane: (o-s).dot(n) == (p-s).dot(n), (p-s) == |z|*d. |
3070 | final Matrix4 transform = getTransformTo(ancestor); |
3071 | final double det = transform.invert(); |
3072 | if (det == 0.0) { |
3073 | return Offset.zero; |
3074 | } |
3075 | final Vector3 n = Vector3(0.0, 0.0, 1.0); |
3076 | final Vector3 i = transform.perspectiveTransform(Vector3(0.0, 0.0, 0.0)); |
3077 | final Vector3 d = transform.perspectiveTransform(Vector3(0.0, 0.0, 1.0)) - i; |
3078 | final Vector3 s = transform.perspectiveTransform(Vector3(point.dx, point.dy, 0.0)); |
3079 | final Vector3 p = s - d * (n.dot(s) / n.dot(d)); |
3080 | return Offset(p.x, p.y); |
3081 | } |
3082 | |
3083 | /// Convert the given point from the local coordinate system for this box to |
3084 | /// the global coordinate system in logical pixels. |
3085 | /// |
3086 | /// If `ancestor` is non-null, this function converts the given point to the |
3087 | /// coordinate system of `ancestor` (which must be an ancestor of this render |
3088 | /// object) instead of to the global coordinate system. |
3089 | /// |
3090 | /// This method is implemented in terms of [getTransformTo]. If the transform |
3091 | /// matrix puts the given `point` on the line at infinity (for instance, when |
3092 | /// the transform matrix is the zero matrix), this method returns (NaN, NaN). |
3093 | Offset localToGlobal(Offset point, {RenderObject? ancestor}) { |
3094 | return MatrixUtils.transformPoint(getTransformTo(ancestor), point); |
3095 | } |
3096 | |
3097 | /// Returns a rectangle that contains all the pixels painted by this box. |
3098 | /// |
3099 | /// The paint bounds can be larger or smaller than [size], which is the amount |
3100 | /// of space this box takes up during layout. For example, if this box casts a |
3101 | /// shadow, that shadow might extend beyond the space allocated to this box |
3102 | /// during layout. |
3103 | /// |
3104 | /// The paint bounds are used to size the buffers into which this box paints. |
3105 | /// If the box attempts to paints outside its paint bounds, there might not be |
3106 | /// enough memory allocated to represent the box's visual appearance, which |
3107 | /// can lead to undefined behavior. |
3108 | /// |
3109 | /// The returned paint bounds are in the local coordinate system of this box. |
3110 | @override |
3111 | Rect get paintBounds => Offset.zero & size; |
3112 | |
3113 | /// Override this method to handle pointer events that hit this render object. |
3114 | /// |
3115 | /// For [RenderBox] objects, the `entry` argument is a [BoxHitTestEntry]. From this |
3116 | /// object you can determine the [PointerDownEvent]'s position in local coordinates. |
3117 | /// (This is useful because [PointerEvent.position] is in global coordinates.) |
3118 | /// |
3119 | /// Implementations of this method should call [debugHandleEvent] as follows, |
3120 | /// so that they support [debugPaintPointersEnabled]: |
3121 | /// |
3122 | /// ```dart |
3123 | /// class RenderFoo extends RenderBox { |
3124 | /// // ... |
3125 | /// |
3126 | /// @override |
3127 | /// void handleEvent(PointerEvent event, HitTestEntry entry) { |
3128 | /// assert(debugHandleEvent(event, entry)); |
3129 | /// // ... handle the event ... |
3130 | /// } |
3131 | /// |
3132 | /// // ... |
3133 | /// } |
3134 | /// ``` |
3135 | @override |
3136 | void handleEvent(PointerEvent event, BoxHitTestEntry entry) { |
3137 | super.handleEvent(event, entry); |
3138 | } |
3139 | |
3140 | int _debugActivePointers = 0; |
3141 | |
3142 | /// Implements the [debugPaintPointersEnabled] debugging feature. |
3143 | /// |
3144 | /// [RenderBox] subclasses that implement [handleEvent] should call |
3145 | /// [debugHandleEvent] from their [handleEvent] method, as follows: |
3146 | /// |
3147 | /// ```dart |
3148 | /// class RenderFoo extends RenderBox { |
3149 | /// // ... |
3150 | /// |
3151 | /// @override |
3152 | /// void handleEvent(PointerEvent event, HitTestEntry entry) { |
3153 | /// assert(debugHandleEvent(event, entry)); |
3154 | /// // ... handle the event ... |
3155 | /// } |
3156 | /// |
3157 | /// // ... |
3158 | /// } |
3159 | /// ``` |
3160 | /// |
3161 | /// If you call this for a [PointerDownEvent], make sure you also call it for |
3162 | /// the corresponding [PointerUpEvent] or [PointerCancelEvent]. |
3163 | bool debugHandleEvent(PointerEvent event, HitTestEntry entry) { |
3164 | assert(() { |
3165 | if (debugPaintPointersEnabled) { |
3166 | if (event is PointerDownEvent) { |
3167 | _debugActivePointers += 1; |
3168 | } else if (event is PointerUpEvent || event is PointerCancelEvent) { |
3169 | _debugActivePointers -= 1; |
3170 | } |
3171 | markNeedsPaint(); |
3172 | } |
3173 | return true; |
3174 | }()); |
3175 | return true; |
3176 | } |
3177 | |
3178 | @override |
3179 | void debugPaint(PaintingContext context, Offset offset) { |
3180 | assert(() { |
3181 | // Only perform the baseline checks after `PipelineOwner.flushLayout` completes. |
3182 | // We can't run this check in the same places we run other intrinsics checks |
3183 | // (in the `RenderBox.size` setter, or after `performResize`), because |
3184 | // `getDistanceToBaseline` may depend on the layout of the child so it's |
3185 | // the safest to only call `getDistanceToBaseline` after the entire tree |
3186 | // finishes doing layout. |
3187 | // |
3188 | // Descendant `RenderObject`s typically call `debugPaint` before their |
3189 | // parents do. This means the baseline implementations are checked from |
3190 | // descendants to ancestors, allowing us to spot the `RenderBox` with an |
3191 | // inconsistent implementation, instead of its ancestors that only reported |
3192 | // inconsistent baseline values because one of its ancestors has an |
3193 | // inconsistent implementation. |
3194 | if (debugCheckIntrinsicSizes) { |
3195 | _debugVerifyDryBaselines(); |
3196 | } |
3197 | if (debugPaintSizeEnabled) { |
3198 | debugPaintSize(context, offset); |
3199 | } |
3200 | if (debugPaintBaselinesEnabled) { |
3201 | debugPaintBaselines(context, offset); |
3202 | } |
3203 | if (debugPaintPointersEnabled) { |
3204 | debugPaintPointers(context, offset); |
3205 | } |
3206 | return true; |
3207 | }()); |
3208 | } |
3209 | |
3210 | /// In debug mode, paints a border around this render box. |
3211 | /// |
3212 | /// Called for every [RenderBox] when [debugPaintSizeEnabled] is true. |
3213 | @protected |
3214 | @visibleForTesting |
3215 | void debugPaintSize(PaintingContext context, Offset offset) { |
3216 | assert(() { |
3217 | final Paint paint = |
3218 | Paint() |
3219 | ..style = PaintingStyle.stroke |
3220 | ..strokeWidth = 1.0 |
3221 | ..color = const Color(0xFF00FFFF); |
3222 | context.canvas.drawRect((offset & size).deflate(0.5), paint); |
3223 | return true; |
3224 | }()); |
3225 | } |
3226 | |
3227 | /// In debug mode, paints a line for each baseline. |
3228 | /// |
3229 | /// Called for every [RenderBox] when [debugPaintBaselinesEnabled] is true. |
3230 | @protected |
3231 | void debugPaintBaselines(PaintingContext context, Offset offset) { |
3232 | assert(() { |
3233 | final Paint paint = |
3234 | Paint() |
3235 | ..style = PaintingStyle.stroke |
3236 | ..strokeWidth = 0.25; |
3237 | Path path; |
3238 | // ideographic baseline |
3239 | final double? baselineI = getDistanceToBaseline(TextBaseline.ideographic, onlyReal: true); |
3240 | if (baselineI != null) { |
3241 | paint.color = const Color(0xFFFFD000); |
3242 | path = Path(); |
3243 | path.moveTo(offset.dx, offset.dy + baselineI); |
3244 | path.lineTo(offset.dx + size.width, offset.dy + baselineI); |
3245 | context.canvas.drawPath(path, paint); |
3246 | } |
3247 | // alphabetic baseline |
3248 | final double? baselineA = getDistanceToBaseline(TextBaseline.alphabetic, onlyReal: true); |
3249 | if (baselineA != null) { |
3250 | paint.color = const Color(0xFF00FF00); |
3251 | path = Path(); |
3252 | path.moveTo(offset.dx, offset.dy + baselineA); |
3253 | path.lineTo(offset.dx + size.width, offset.dy + baselineA); |
3254 | context.canvas.drawPath(path, paint); |
3255 | } |
3256 | return true; |
3257 | }()); |
3258 | } |
3259 | |
3260 | /// In debug mode, paints a rectangle if this render box has counted more |
3261 | /// pointer downs than pointer up events. |
3262 | /// |
3263 | /// Called for every [RenderBox] when [debugPaintPointersEnabled] is true. |
3264 | /// |
3265 | /// By default, events are not counted. For details on how to ensure that |
3266 | /// events are counted for your class, see [debugHandleEvent]. |
3267 | @protected |
3268 | void debugPaintPointers(PaintingContext context, Offset offset) { |
3269 | assert(() { |
3270 | if (_debugActivePointers > 0) { |
3271 | final Paint paint = Paint()..color = Color(0x00BBBB | ((0x04000000 * depth) & 0xFF000000)); |
3272 | context.canvas.drawRect(offset & size, paint); |
3273 | } |
3274 | return true; |
3275 | }()); |
3276 | } |
3277 | |
3278 | @override |
3279 | void debugFillProperties(DiagnosticPropertiesBuilder properties) { |
3280 | super.debugFillProperties(properties); |
3281 | properties.add(DiagnosticsProperty<Size>('size', _size, missingIfNull: true)); |
3282 | } |
3283 | } |
3284 | |
3285 | /// A mixin that provides useful default behaviors for boxes with children |
3286 | /// managed by the [ContainerRenderObjectMixin] mixin. |
3287 | /// |
3288 | /// By convention, this class doesn't override any members of the superclass. |
3289 | /// Instead, it provides helpful functions that subclasses can call as |
3290 | /// appropriate. |
3291 | mixin RenderBoxContainerDefaultsMixin< |
3292 | ChildType extends RenderBox, |
3293 | ParentDataType extends ContainerBoxParentData<ChildType> |
3294 | > |
3295 | implements ContainerRenderObjectMixin<ChildType, ParentDataType> { |
3296 | /// Returns the baseline of the first child with a baseline. |
3297 | /// |
3298 | /// Useful when the children are displayed vertically in the same order they |
3299 | /// appear in the child list. |
3300 | double? defaultComputeDistanceToFirstActualBaseline(TextBaseline baseline) { |
3301 | assert(!debugNeedsLayout); |
3302 | ChildType? child = firstChild; |
3303 | while (child != null) { |
3304 | final ParentDataType childParentData = child.parentData! as ParentDataType; |
3305 | final double? result = child.getDistanceToActualBaseline(baseline); |
3306 | if (result != null) { |
3307 | return result + childParentData.offset.dy; |
3308 | } |
3309 | child = childParentData.nextSibling; |
3310 | } |
3311 | return null; |
3312 | } |
3313 | |
3314 | /// Returns the minimum baseline value among every child. |
3315 | /// |
3316 | /// Useful when the vertical position of the children isn't determined by the |
3317 | /// order in the child list. |
3318 | double? defaultComputeDistanceToHighestActualBaseline(TextBaseline baseline) { |
3319 | assert(!debugNeedsLayout); |
3320 | BaselineOffset minBaseline = BaselineOffset.noBaseline; |
3321 | ChildType? child = firstChild; |
3322 | while (child != null) { |
3323 | final ParentDataType childParentData = child.parentData! as ParentDataType; |
3324 | final BaselineOffset candidate = |
3325 | BaselineOffset(child.getDistanceToActualBaseline(baseline)) + childParentData.offset.dy; |
3326 | minBaseline = minBaseline.minOf(candidate); |
3327 | child = childParentData.nextSibling; |
3328 | } |
3329 | return minBaseline.offset; |
3330 | } |
3331 | |
3332 | /// Performs a hit test on each child by walking the child list backwards. |
3333 | /// |
3334 | /// Stops walking once after the first child reports that it contains the |
3335 | /// given point. Returns whether any children contain the given point. |
3336 | /// |
3337 | /// See also: |
3338 | /// |
3339 | /// * [defaultPaint], which paints the children appropriate for this |
3340 | /// hit-testing strategy. |
3341 | bool defaultHitTestChildren(BoxHitTestResult result, {required Offset position}) { |
3342 | ChildType? child = lastChild; |
3343 | while (child != null) { |
3344 | // The x, y parameters have the top left of the node's box as the origin. |
3345 | final ParentDataType childParentData = child.parentData! as ParentDataType; |
3346 | final bool isHit = result.addWithPaintOffset( |
3347 | offset: childParentData.offset, |
3348 | position: position, |
3349 | hitTest: (BoxHitTestResult result, Offset transformed) { |
3350 | assert(transformed == position - childParentData.offset); |
3351 | return child!.hitTest(result, position: transformed); |
3352 | }, |
3353 | ); |
3354 | if (isHit) { |
3355 | return true; |
3356 | } |
3357 | child = childParentData.previousSibling; |
3358 | } |
3359 | return false; |
3360 | } |
3361 | |
3362 | /// Paints each child by walking the child list forwards. |
3363 | /// |
3364 | /// See also: |
3365 | /// |
3366 | /// * [defaultHitTestChildren], which implements hit-testing of the children |
3367 | /// in a manner appropriate for this painting strategy. |
3368 | void defaultPaint(PaintingContext context, Offset offset) { |
3369 | ChildType? child = firstChild; |
3370 | while (child != null) { |
3371 | final ParentDataType childParentData = child.parentData! as ParentDataType; |
3372 | context.paintChild(child, childParentData.offset + offset); |
3373 | child = childParentData.nextSibling; |
3374 | } |
3375 | } |
3376 | |
3377 | /// Returns a list containing the children of this render object. |
3378 | /// |
3379 | /// This function is useful when you need random-access to the children of |
3380 | /// this render object. If you're accessing the children in order, consider |
3381 | /// walking the child list directly. |
3382 | List<ChildType> getChildrenAsList() { |
3383 | final List<ChildType> result = <ChildType>[]; |
3384 | RenderBox? child = firstChild; |
3385 | while (child != null) { |
3386 | final ParentDataType childParentData = child.parentData! as ParentDataType; |
3387 | result.add(child as ChildType); |
3388 | child = childParentData.nextSibling; |
3389 | } |
3390 | return result; |
3391 | } |
3392 | } |
3393 |
Definitions
- _DebugSize
- _DebugSize
- BoxConstraints
- BoxConstraints
- tight
- tightFor
- tightForFinite
- loose
- expand
- fromViewConstraints
- copyWith
- deflate
- loosen
- enforce
- tighten
- flipped
- widthConstraints
- heightConstraints
- constrainWidth
- constrainHeight
- _debugPropagateDebugSize
- constrain
- constrainDimensions
- constrainSizeAndAttemptToPreserveAspectRatio
- biggest
- smallest
- hasTightWidth
- hasTightHeight
- isTight
- hasBoundedWidth
- hasBoundedHeight
- hasInfiniteWidth
- hasInfiniteHeight
- isSatisfiedBy
- *
- /
- ~/
- %
- lerp
- isNormalized
- debugAssertIsValid
- throwError
- normalize
- ==
- hashCode
- toString
- describe
- BoxHitTestResult
- BoxHitTestResult
- wrap
- addWithPaintTransform
- addWithPaintOffset
- addWithRawTransform
- addWithOutOfBandPosition
- BoxHitTestEntry
- BoxHitTestEntry
- toString
- BoxParentData
- toString
- ContainerBoxParentData
- _CachedLayoutCalculation
- memoize
- debugFillTimelineArguments
- eventLabel
- _DryLayout
- _DryLayout
- memoize
- debugFillTimelineArguments
- eventLabel
- _Baseline
- _Baseline
- memoize
- ifAbsent
- debugFillTimelineArguments
- eventLabel
- _IntrinsicDimension
- memoize
- debugFillTimelineArguments
- eventLabel
- _LayoutCacheStorage
- clear
- RenderBox
- setupParentData
- _computeIntrinsics
- _computeWithTimeline
- getMinIntrinsicWidth
- computeMinIntrinsicWidth
- getMaxIntrinsicWidth
- computeMaxIntrinsicWidth
- getMinIntrinsicHeight
- computeMinIntrinsicHeight
- getMaxIntrinsicHeight
- computeMaxIntrinsicHeight
- getDryLayout
- _computeDryLayout
- computeDryLayout
- getDryBaseline
- _computeDryBaseline
- computeDryBaseline
- debugCannotComputeDryLayout
- hasSize
- size
- size
- debugAdoptSize
- semanticBounds
- debugResetSize
- _debugSetDoingBaseline
- getDistanceToBaseline
- getDistanceToActualBaseline
- computeDistanceToActualBaseline
- constraints
- debugAssertDoesMeetConstraints
- testIntrinsic
- testIntrinsicsForValues
- _debugVerifyDryBaselines
- markNeedsLayout
- performResize
- performLayout
- hitTest
- hitTestSelf
- hitTestChildren
- applyPaintTransform
- globalToLocal
- localToGlobal
- paintBounds
- handleEvent
- debugHandleEvent
- debugPaint
- debugPaintSize
- debugPaintBaselines
- debugPaintPointers
- debugFillProperties
- RenderBoxContainerDefaultsMixin
- defaultComputeDistanceToFirstActualBaseline
- defaultComputeDistanceToHighestActualBaseline
- defaultHitTestChildren
- defaultPaint
Learn more about Flutter for embedded and desktop on industrialflutter.com