| 1 | #![stable (feature = "rust1" , since = "1.0.0" )] |
| 2 | |
| 3 | //! Thread-safe reference-counting pointers. |
| 4 | //! |
| 5 | //! See the [`Arc<T>`][Arc] documentation for more details. |
| 6 | //! |
| 7 | //! **Note**: This module is only available on platforms that support atomic |
| 8 | //! loads and stores of pointers. This may be detected at compile time using |
| 9 | //! `#[cfg(target_has_atomic = "ptr")]`. |
| 10 | |
| 11 | use core::any::Any; |
| 12 | #[cfg (not(no_global_oom_handling))] |
| 13 | use core::clone::CloneToUninit; |
| 14 | use core::clone::UseCloned; |
| 15 | use core::cmp::Ordering; |
| 16 | use core::hash::{Hash, Hasher}; |
| 17 | use core::intrinsics::abort; |
| 18 | #[cfg (not(no_global_oom_handling))] |
| 19 | use core::iter; |
| 20 | use core::marker::{PhantomData, Unsize}; |
| 21 | use core::mem::{self, ManuallyDrop, align_of_val_raw}; |
| 22 | use core::num::NonZeroUsize; |
| 23 | use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver}; |
| 24 | use core::panic::{RefUnwindSafe, UnwindSafe}; |
| 25 | use core::pin::{Pin, PinCoerceUnsized}; |
| 26 | use core::ptr::{self, NonNull}; |
| 27 | #[cfg (not(no_global_oom_handling))] |
| 28 | use core::slice::from_raw_parts_mut; |
| 29 | use core::sync::atomic::Ordering::{Acquire, Relaxed, Release}; |
| 30 | use core::sync::atomic::{self, Atomic}; |
| 31 | use core::{borrow, fmt, hint}; |
| 32 | |
| 33 | #[cfg (not(no_global_oom_handling))] |
| 34 | use crate::alloc::handle_alloc_error; |
| 35 | use crate::alloc::{AllocError, Allocator, Global, Layout}; |
| 36 | use crate::borrow::{Cow, ToOwned}; |
| 37 | use crate::boxed::Box; |
| 38 | use crate::rc::is_dangling; |
| 39 | #[cfg (not(no_global_oom_handling))] |
| 40 | use crate::string::String; |
| 41 | #[cfg (not(no_global_oom_handling))] |
| 42 | use crate::vec::Vec; |
| 43 | |
| 44 | /// A soft limit on the amount of references that may be made to an `Arc`. |
| 45 | /// |
| 46 | /// Going above this limit will abort your program (although not |
| 47 | /// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references. |
| 48 | /// Trying to go above it might call a `panic` (if not actually going above it). |
| 49 | /// |
| 50 | /// This is a global invariant, and also applies when using a compare-exchange loop. |
| 51 | /// |
| 52 | /// See comment in `Arc::clone`. |
| 53 | const MAX_REFCOUNT: usize = (isize::MAX) as usize; |
| 54 | |
| 55 | /// The error in case either counter reaches above `MAX_REFCOUNT`, and we can `panic` safely. |
| 56 | const INTERNAL_OVERFLOW_ERROR: &str = "Arc counter overflow" ; |
| 57 | |
| 58 | #[cfg (not(sanitize = "thread" ))] |
| 59 | macro_rules! acquire { |
| 60 | ($x:expr) => { |
| 61 | atomic::fence(Acquire) |
| 62 | }; |
| 63 | } |
| 64 | |
| 65 | // ThreadSanitizer does not support memory fences. To avoid false positive |
| 66 | // reports in Arc / Weak implementation use atomic loads for synchronization |
| 67 | // instead. |
| 68 | #[cfg (sanitize = "thread" )] |
| 69 | macro_rules! acquire { |
| 70 | ($x:expr) => { |
| 71 | $x.load(Acquire) |
| 72 | }; |
| 73 | } |
| 74 | |
| 75 | /// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically |
| 76 | /// Reference Counted'. |
| 77 | /// |
| 78 | /// The type `Arc<T>` provides shared ownership of a value of type `T`, |
| 79 | /// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces |
| 80 | /// a new `Arc` instance, which points to the same allocation on the heap as the |
| 81 | /// source `Arc`, while increasing a reference count. When the last `Arc` |
| 82 | /// pointer to a given allocation is destroyed, the value stored in that allocation (often |
| 83 | /// referred to as "inner value") is also dropped. |
| 84 | /// |
| 85 | /// Shared references in Rust disallow mutation by default, and `Arc` is no |
| 86 | /// exception: you cannot generally obtain a mutable reference to something |
| 87 | /// inside an `Arc`. If you do need to mutate through an `Arc`, you have several options: |
| 88 | /// |
| 89 | /// 1. Use interior mutability with synchronization primitives like [`Mutex`][mutex], |
| 90 | /// [`RwLock`][rwlock], or one of the [`Atomic`][atomic] types. |
| 91 | /// |
| 92 | /// 2. Use clone-on-write semantics with [`Arc::make_mut`] which provides efficient mutation |
| 93 | /// without requiring interior mutability. This approach clones the data only when |
| 94 | /// needed (when there are multiple references) and can be more efficient when mutations |
| 95 | /// are infrequent. |
| 96 | /// |
| 97 | /// 3. Use [`Arc::get_mut`] when you know your `Arc` is not shared (has a reference count of 1), |
| 98 | /// which provides direct mutable access to the inner value without any cloning. |
| 99 | /// |
| 100 | /// ``` |
| 101 | /// use std::sync::Arc; |
| 102 | /// |
| 103 | /// let mut data = Arc::new(vec![1, 2, 3]); |
| 104 | /// |
| 105 | /// // This will clone the vector only if there are other references to it |
| 106 | /// Arc::make_mut(&mut data).push(4); |
| 107 | /// |
| 108 | /// assert_eq!(*data, vec![1, 2, 3, 4]); |
| 109 | /// ``` |
| 110 | /// |
| 111 | /// **Note**: This type is only available on platforms that support atomic |
| 112 | /// loads and stores of pointers, which includes all platforms that support |
| 113 | /// the `std` crate but not all those which only support [`alloc`](crate). |
| 114 | /// This may be detected at compile time using `#[cfg(target_has_atomic = "ptr")]`. |
| 115 | /// |
| 116 | /// ## Thread Safety |
| 117 | /// |
| 118 | /// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference |
| 119 | /// counting. This means that it is thread-safe. The disadvantage is that |
| 120 | /// atomic operations are more expensive than ordinary memory accesses. If you |
| 121 | /// are not sharing reference-counted allocations between threads, consider using |
| 122 | /// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the |
| 123 | /// compiler will catch any attempt to send an [`Rc<T>`] between threads. |
| 124 | /// However, a library might choose `Arc<T>` in order to give library consumers |
| 125 | /// more flexibility. |
| 126 | /// |
| 127 | /// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements |
| 128 | /// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an |
| 129 | /// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at |
| 130 | /// first: after all, isn't the point of `Arc<T>` thread safety? The key is |
| 131 | /// this: `Arc<T>` makes it thread safe to have multiple ownership of the same |
| 132 | /// data, but it doesn't add thread safety to its data. Consider |
| 133 | /// <code>Arc<[RefCell\<T>]></code>. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always |
| 134 | /// [`Send`], <code>Arc<[RefCell\<T>]></code> would be as well. But then we'd have a problem: |
| 135 | /// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using |
| 136 | /// non-atomic operations. |
| 137 | /// |
| 138 | /// In the end, this means that you may need to pair `Arc<T>` with some sort of |
| 139 | /// [`std::sync`] type, usually [`Mutex<T>`][mutex]. |
| 140 | /// |
| 141 | /// ## Breaking cycles with `Weak` |
| 142 | /// |
| 143 | /// The [`downgrade`][downgrade] method can be used to create a non-owning |
| 144 | /// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d |
| 145 | /// to an `Arc`, but this will return [`None`] if the value stored in the allocation has |
| 146 | /// already been dropped. In other words, `Weak` pointers do not keep the value |
| 147 | /// inside the allocation alive; however, they *do* keep the allocation |
| 148 | /// (the backing store for the value) alive. |
| 149 | /// |
| 150 | /// A cycle between `Arc` pointers will never be deallocated. For this reason, |
| 151 | /// [`Weak`] is used to break cycles. For example, a tree could have |
| 152 | /// strong `Arc` pointers from parent nodes to children, and [`Weak`] |
| 153 | /// pointers from children back to their parents. |
| 154 | /// |
| 155 | /// # Cloning references |
| 156 | /// |
| 157 | /// Creating a new reference from an existing reference-counted pointer is done using the |
| 158 | /// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak]. |
| 159 | /// |
| 160 | /// ``` |
| 161 | /// use std::sync::Arc; |
| 162 | /// let foo = Arc::new(vec![1.0, 2.0, 3.0]); |
| 163 | /// // The two syntaxes below are equivalent. |
| 164 | /// let a = foo.clone(); |
| 165 | /// let b = Arc::clone(&foo); |
| 166 | /// // a, b, and foo are all Arcs that point to the same memory location |
| 167 | /// ``` |
| 168 | /// |
| 169 | /// ## `Deref` behavior |
| 170 | /// |
| 171 | /// `Arc<T>` automatically dereferences to `T` (via the [`Deref`] trait), |
| 172 | /// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name |
| 173 | /// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated |
| 174 | /// functions, called using [fully qualified syntax]: |
| 175 | /// |
| 176 | /// ``` |
| 177 | /// use std::sync::Arc; |
| 178 | /// |
| 179 | /// let my_arc = Arc::new(()); |
| 180 | /// let my_weak = Arc::downgrade(&my_arc); |
| 181 | /// ``` |
| 182 | /// |
| 183 | /// `Arc<T>`'s implementations of traits like `Clone` may also be called using |
| 184 | /// fully qualified syntax. Some people prefer to use fully qualified syntax, |
| 185 | /// while others prefer using method-call syntax. |
| 186 | /// |
| 187 | /// ``` |
| 188 | /// use std::sync::Arc; |
| 189 | /// |
| 190 | /// let arc = Arc::new(()); |
| 191 | /// // Method-call syntax |
| 192 | /// let arc2 = arc.clone(); |
| 193 | /// // Fully qualified syntax |
| 194 | /// let arc3 = Arc::clone(&arc); |
| 195 | /// ``` |
| 196 | /// |
| 197 | /// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have |
| 198 | /// already been dropped. |
| 199 | /// |
| 200 | /// [`Rc<T>`]: crate::rc::Rc |
| 201 | /// [clone]: Clone::clone |
| 202 | /// [mutex]: ../../std/sync/struct.Mutex.html |
| 203 | /// [rwlock]: ../../std/sync/struct.RwLock.html |
| 204 | /// [atomic]: core::sync::atomic |
| 205 | /// [downgrade]: Arc::downgrade |
| 206 | /// [upgrade]: Weak::upgrade |
| 207 | /// [RefCell\<T>]: core::cell::RefCell |
| 208 | /// [`RefCell<T>`]: core::cell::RefCell |
| 209 | /// [`std::sync`]: ../../std/sync/index.html |
| 210 | /// [`Arc::clone(&from)`]: Arc::clone |
| 211 | /// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name |
| 212 | /// |
| 213 | /// # Examples |
| 214 | /// |
| 215 | /// Sharing some immutable data between threads: |
| 216 | /// |
| 217 | /// ``` |
| 218 | /// use std::sync::Arc; |
| 219 | /// use std::thread; |
| 220 | /// |
| 221 | /// let five = Arc::new(5); |
| 222 | /// |
| 223 | /// for _ in 0..10 { |
| 224 | /// let five = Arc::clone(&five); |
| 225 | /// |
| 226 | /// thread::spawn(move || { |
| 227 | /// println!("{five:?}" ); |
| 228 | /// }); |
| 229 | /// } |
| 230 | /// ``` |
| 231 | /// |
| 232 | /// Sharing a mutable [`AtomicUsize`]: |
| 233 | /// |
| 234 | /// [`AtomicUsize`]: core::sync::atomic::AtomicUsize "sync::atomic::AtomicUsize" |
| 235 | /// |
| 236 | /// ``` |
| 237 | /// use std::sync::Arc; |
| 238 | /// use std::sync::atomic::{AtomicUsize, Ordering}; |
| 239 | /// use std::thread; |
| 240 | /// |
| 241 | /// let val = Arc::new(AtomicUsize::new(5)); |
| 242 | /// |
| 243 | /// for _ in 0..10 { |
| 244 | /// let val = Arc::clone(&val); |
| 245 | /// |
| 246 | /// thread::spawn(move || { |
| 247 | /// let v = val.fetch_add(1, Ordering::Relaxed); |
| 248 | /// println!("{v:?}" ); |
| 249 | /// }); |
| 250 | /// } |
| 251 | /// ``` |
| 252 | /// |
| 253 | /// See the [`rc` documentation][rc_examples] for more examples of reference |
| 254 | /// counting in general. |
| 255 | /// |
| 256 | /// [rc_examples]: crate::rc#examples |
| 257 | #[doc (search_unbox)] |
| 258 | #[rustc_diagnostic_item = "Arc" ] |
| 259 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 260 | #[rustc_insignificant_dtor ] |
| 261 | pub struct Arc< |
| 262 | T: ?Sized, |
| 263 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
| 264 | > { |
| 265 | ptr: NonNull<ArcInner<T>>, |
| 266 | phantom: PhantomData<ArcInner<T>>, |
| 267 | alloc: A, |
| 268 | } |
| 269 | |
| 270 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 271 | unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Arc<T, A> {} |
| 272 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 273 | unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Arc<T, A> {} |
| 274 | |
| 275 | #[stable (feature = "catch_unwind" , since = "1.9.0" )] |
| 276 | impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Arc<T, A> {} |
| 277 | |
| 278 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 279 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Arc<U, A>> for Arc<T, A> {} |
| 280 | |
| 281 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
| 282 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {} |
| 283 | |
| 284 | impl<T: ?Sized> Arc<T> { |
| 285 | unsafe fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self { |
| 286 | unsafe { Self::from_inner_in(ptr, alloc:Global) } |
| 287 | } |
| 288 | |
| 289 | unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self { |
| 290 | unsafe { Self::from_ptr_in(ptr, alloc:Global) } |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | impl<T: ?Sized, A: Allocator> Arc<T, A> { |
| 295 | #[inline ] |
| 296 | fn into_inner_with_allocator(this: Self) -> (NonNull<ArcInner<T>>, A) { |
| 297 | let this: ManuallyDrop> = mem::ManuallyDrop::new(this); |
| 298 | (this.ptr, unsafe { ptr::read(&this.alloc) }) |
| 299 | } |
| 300 | |
| 301 | #[inline ] |
| 302 | unsafe fn from_inner_in(ptr: NonNull<ArcInner<T>>, alloc: A) -> Self { |
| 303 | Self { ptr, phantom: PhantomData, alloc } |
| 304 | } |
| 305 | |
| 306 | #[inline ] |
| 307 | unsafe fn from_ptr_in(ptr: *mut ArcInner<T>, alloc: A) -> Self { |
| 308 | unsafe { Self::from_inner_in(ptr:NonNull::new_unchecked(ptr), alloc) } |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | /// `Weak` is a version of [`Arc`] that holds a non-owning reference to the |
| 313 | /// managed allocation. |
| 314 | /// |
| 315 | /// The allocation is accessed by calling [`upgrade`] on the `Weak` |
| 316 | /// pointer, which returns an <code>[Option]<[Arc]\<T>></code>. |
| 317 | /// |
| 318 | /// Since a `Weak` reference does not count towards ownership, it will not |
| 319 | /// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no |
| 320 | /// guarantees about the value still being present. Thus it may return [`None`] |
| 321 | /// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation |
| 322 | /// itself (the backing store) from being deallocated. |
| 323 | /// |
| 324 | /// A `Weak` pointer is useful for keeping a temporary reference to the allocation |
| 325 | /// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to |
| 326 | /// prevent circular references between [`Arc`] pointers, since mutual owning references |
| 327 | /// would never allow either [`Arc`] to be dropped. For example, a tree could |
| 328 | /// have strong [`Arc`] pointers from parent nodes to children, and `Weak` |
| 329 | /// pointers from children back to their parents. |
| 330 | /// |
| 331 | /// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`]. |
| 332 | /// |
| 333 | /// [`upgrade`]: Weak::upgrade |
| 334 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
| 335 | #[rustc_diagnostic_item = "ArcWeak" ] |
| 336 | pub struct Weak< |
| 337 | T: ?Sized, |
| 338 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
| 339 | > { |
| 340 | // This is a `NonNull` to allow optimizing the size of this type in enums, |
| 341 | // but it is not necessarily a valid pointer. |
| 342 | // `Weak::new` sets this to `usize::MAX` so that it doesn’t need |
| 343 | // to allocate space on the heap. That's not a value a real pointer |
| 344 | // will ever have because RcInner has alignment at least 2. |
| 345 | // This is only possible when `T: Sized`; unsized `T` never dangle. |
| 346 | ptr: NonNull<ArcInner<T>>, |
| 347 | alloc: A, |
| 348 | } |
| 349 | |
| 350 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
| 351 | unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Weak<T, A> {} |
| 352 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
| 353 | unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Weak<T, A> {} |
| 354 | |
| 355 | #[unstable (feature = "coerce_unsized" , issue = "18598" )] |
| 356 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {} |
| 357 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
| 358 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {} |
| 359 | |
| 360 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
| 361 | impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> { |
| 362 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 363 | write!(f, "(Weak)" ) |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | // This is repr(C) to future-proof against possible field-reordering, which |
| 368 | // would interfere with otherwise safe [into|from]_raw() of transmutable |
| 369 | // inner types. |
| 370 | #[repr (C)] |
| 371 | struct ArcInner<T: ?Sized> { |
| 372 | strong: Atomic<usize>, |
| 373 | |
| 374 | // the value usize::MAX acts as a sentinel for temporarily "locking" the |
| 375 | // ability to upgrade weak pointers or downgrade strong ones; this is used |
| 376 | // to avoid races in `make_mut` and `get_mut`. |
| 377 | weak: Atomic<usize>, |
| 378 | |
| 379 | data: T, |
| 380 | } |
| 381 | |
| 382 | /// Calculate layout for `ArcInner<T>` using the inner value's layout |
| 383 | fn arcinner_layout_for_value_layout(layout: Layout) -> Layout { |
| 384 | // Calculate layout using the given value layout. |
| 385 | // Previously, layout was calculated on the expression |
| 386 | // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned |
| 387 | // reference (see #54908). |
| 388 | Layout::new::<ArcInner<()>>().extend(next:layout).unwrap().0.pad_to_align() |
| 389 | } |
| 390 | |
| 391 | unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {} |
| 392 | unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {} |
| 393 | |
| 394 | impl<T> Arc<T> { |
| 395 | /// Constructs a new `Arc<T>`. |
| 396 | /// |
| 397 | /// # Examples |
| 398 | /// |
| 399 | /// ``` |
| 400 | /// use std::sync::Arc; |
| 401 | /// |
| 402 | /// let five = Arc::new(5); |
| 403 | /// ``` |
| 404 | #[cfg (not(no_global_oom_handling))] |
| 405 | #[inline ] |
| 406 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 407 | pub fn new(data: T) -> Arc<T> { |
| 408 | // Start the weak pointer count as 1 which is the weak pointer that's |
| 409 | // held by all the strong pointers (kinda), see std/rc.rs for more info |
| 410 | let x: Box<_> = Box::new(ArcInner { |
| 411 | strong: atomic::AtomicUsize::new(1), |
| 412 | weak: atomic::AtomicUsize::new(1), |
| 413 | data, |
| 414 | }); |
| 415 | unsafe { Self::from_inner(Box::leak(x).into()) } |
| 416 | } |
| 417 | |
| 418 | /// Constructs a new `Arc<T>` while giving you a `Weak<T>` to the allocation, |
| 419 | /// to allow you to construct a `T` which holds a weak pointer to itself. |
| 420 | /// |
| 421 | /// Generally, a structure circularly referencing itself, either directly or |
| 422 | /// indirectly, should not hold a strong reference to itself to prevent a memory leak. |
| 423 | /// Using this function, you get access to the weak pointer during the |
| 424 | /// initialization of `T`, before the `Arc<T>` is created, such that you can |
| 425 | /// clone and store it inside the `T`. |
| 426 | /// |
| 427 | /// `new_cyclic` first allocates the managed allocation for the `Arc<T>`, |
| 428 | /// then calls your closure, giving it a `Weak<T>` to this allocation, |
| 429 | /// and only afterwards completes the construction of the `Arc<T>` by placing |
| 430 | /// the `T` returned from your closure into the allocation. |
| 431 | /// |
| 432 | /// Since the new `Arc<T>` is not fully-constructed until `Arc<T>::new_cyclic` |
| 433 | /// returns, calling [`upgrade`] on the weak reference inside your closure will |
| 434 | /// fail and result in a `None` value. |
| 435 | /// |
| 436 | /// # Panics |
| 437 | /// |
| 438 | /// If `data_fn` panics, the panic is propagated to the caller, and the |
| 439 | /// temporary [`Weak<T>`] is dropped normally. |
| 440 | /// |
| 441 | /// # Example |
| 442 | /// |
| 443 | /// ``` |
| 444 | /// # #![allow (dead_code)] |
| 445 | /// use std::sync::{Arc, Weak}; |
| 446 | /// |
| 447 | /// struct Gadget { |
| 448 | /// me: Weak<Gadget>, |
| 449 | /// } |
| 450 | /// |
| 451 | /// impl Gadget { |
| 452 | /// /// Constructs a reference counted Gadget. |
| 453 | /// fn new() -> Arc<Self> { |
| 454 | /// // `me` is a `Weak<Gadget>` pointing at the new allocation of the |
| 455 | /// // `Arc` we're constructing. |
| 456 | /// Arc::new_cyclic(|me| { |
| 457 | /// // Create the actual struct here. |
| 458 | /// Gadget { me: me.clone() } |
| 459 | /// }) |
| 460 | /// } |
| 461 | /// |
| 462 | /// /// Returns a reference counted pointer to Self. |
| 463 | /// fn me(&self) -> Arc<Self> { |
| 464 | /// self.me.upgrade().unwrap() |
| 465 | /// } |
| 466 | /// } |
| 467 | /// ``` |
| 468 | /// [`upgrade`]: Weak::upgrade |
| 469 | #[cfg (not(no_global_oom_handling))] |
| 470 | #[inline ] |
| 471 | #[stable (feature = "arc_new_cyclic" , since = "1.60.0" )] |
| 472 | pub fn new_cyclic<F>(data_fn: F) -> Arc<T> |
| 473 | where |
| 474 | F: FnOnce(&Weak<T>) -> T, |
| 475 | { |
| 476 | Self::new_cyclic_in(data_fn, Global) |
| 477 | } |
| 478 | |
| 479 | /// Constructs a new `Arc` with uninitialized contents. |
| 480 | /// |
| 481 | /// # Examples |
| 482 | /// |
| 483 | /// ``` |
| 484 | /// #![feature(get_mut_unchecked)] |
| 485 | /// |
| 486 | /// use std::sync::Arc; |
| 487 | /// |
| 488 | /// let mut five = Arc::<u32>::new_uninit(); |
| 489 | /// |
| 490 | /// // Deferred initialization: |
| 491 | /// Arc::get_mut(&mut five).unwrap().write(5); |
| 492 | /// |
| 493 | /// let five = unsafe { five.assume_init() }; |
| 494 | /// |
| 495 | /// assert_eq!(*five, 5) |
| 496 | /// ``` |
| 497 | #[cfg (not(no_global_oom_handling))] |
| 498 | #[inline ] |
| 499 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 500 | #[must_use ] |
| 501 | pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> { |
| 502 | unsafe { |
| 503 | Arc::from_ptr(Arc::allocate_for_layout( |
| 504 | Layout::new::<T>(), |
| 505 | |layout| Global.allocate(layout), |
| 506 | <*mut u8>::cast, |
| 507 | )) |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | /// Constructs a new `Arc` with uninitialized contents, with the memory |
| 512 | /// being filled with `0` bytes. |
| 513 | /// |
| 514 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 515 | /// of this method. |
| 516 | /// |
| 517 | /// # Examples |
| 518 | /// |
| 519 | /// ``` |
| 520 | /// #![feature(new_zeroed_alloc)] |
| 521 | /// |
| 522 | /// use std::sync::Arc; |
| 523 | /// |
| 524 | /// let zero = Arc::<u32>::new_zeroed(); |
| 525 | /// let zero = unsafe { zero.assume_init() }; |
| 526 | /// |
| 527 | /// assert_eq!(*zero, 0) |
| 528 | /// ``` |
| 529 | /// |
| 530 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 531 | #[cfg (not(no_global_oom_handling))] |
| 532 | #[inline ] |
| 533 | #[unstable (feature = "new_zeroed_alloc" , issue = "129396" )] |
| 534 | #[must_use ] |
| 535 | pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> { |
| 536 | unsafe { |
| 537 | Arc::from_ptr(Arc::allocate_for_layout( |
| 538 | Layout::new::<T>(), |
| 539 | |layout| Global.allocate_zeroed(layout), |
| 540 | <*mut u8>::cast, |
| 541 | )) |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then |
| 546 | /// `data` will be pinned in memory and unable to be moved. |
| 547 | #[cfg (not(no_global_oom_handling))] |
| 548 | #[stable (feature = "pin" , since = "1.33.0" )] |
| 549 | #[must_use ] |
| 550 | pub fn pin(data: T) -> Pin<Arc<T>> { |
| 551 | unsafe { Pin::new_unchecked(Arc::new(data)) } |
| 552 | } |
| 553 | |
| 554 | /// Constructs a new `Pin<Arc<T>>`, return an error if allocation fails. |
| 555 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 556 | #[inline ] |
| 557 | pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError> { |
| 558 | unsafe { Ok(Pin::new_unchecked(Arc::try_new(data)?)) } |
| 559 | } |
| 560 | |
| 561 | /// Constructs a new `Arc<T>`, returning an error if allocation fails. |
| 562 | /// |
| 563 | /// # Examples |
| 564 | /// |
| 565 | /// ``` |
| 566 | /// #![feature(allocator_api)] |
| 567 | /// use std::sync::Arc; |
| 568 | /// |
| 569 | /// let five = Arc::try_new(5)?; |
| 570 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 571 | /// ``` |
| 572 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 573 | #[inline ] |
| 574 | pub fn try_new(data: T) -> Result<Arc<T>, AllocError> { |
| 575 | // Start the weak pointer count as 1 which is the weak pointer that's |
| 576 | // held by all the strong pointers (kinda), see std/rc.rs for more info |
| 577 | let x: Box<_> = Box::try_new(ArcInner { |
| 578 | strong: atomic::AtomicUsize::new(1), |
| 579 | weak: atomic::AtomicUsize::new(1), |
| 580 | data, |
| 581 | })?; |
| 582 | unsafe { Ok(Self::from_inner(Box::leak(x).into())) } |
| 583 | } |
| 584 | |
| 585 | /// Constructs a new `Arc` with uninitialized contents, returning an error |
| 586 | /// if allocation fails. |
| 587 | /// |
| 588 | /// # Examples |
| 589 | /// |
| 590 | /// ``` |
| 591 | /// #![feature(allocator_api)] |
| 592 | /// #![feature(get_mut_unchecked)] |
| 593 | /// |
| 594 | /// use std::sync::Arc; |
| 595 | /// |
| 596 | /// let mut five = Arc::<u32>::try_new_uninit()?; |
| 597 | /// |
| 598 | /// // Deferred initialization: |
| 599 | /// Arc::get_mut(&mut five).unwrap().write(5); |
| 600 | /// |
| 601 | /// let five = unsafe { five.assume_init() }; |
| 602 | /// |
| 603 | /// assert_eq!(*five, 5); |
| 604 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 605 | /// ``` |
| 606 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 607 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 608 | pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> { |
| 609 | unsafe { |
| 610 | Ok(Arc::from_ptr(Arc::try_allocate_for_layout( |
| 611 | Layout::new::<T>(), |
| 612 | |layout| Global.allocate(layout), |
| 613 | <*mut u8>::cast, |
| 614 | )?)) |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | /// Constructs a new `Arc` with uninitialized contents, with the memory |
| 619 | /// being filled with `0` bytes, returning an error if allocation fails. |
| 620 | /// |
| 621 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 622 | /// of this method. |
| 623 | /// |
| 624 | /// # Examples |
| 625 | /// |
| 626 | /// ``` |
| 627 | /// #![feature( allocator_api)] |
| 628 | /// |
| 629 | /// use std::sync::Arc; |
| 630 | /// |
| 631 | /// let zero = Arc::<u32>::try_new_zeroed()?; |
| 632 | /// let zero = unsafe { zero.assume_init() }; |
| 633 | /// |
| 634 | /// assert_eq!(*zero, 0); |
| 635 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 636 | /// ``` |
| 637 | /// |
| 638 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 639 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 640 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 641 | pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> { |
| 642 | unsafe { |
| 643 | Ok(Arc::from_ptr(Arc::try_allocate_for_layout( |
| 644 | Layout::new::<T>(), |
| 645 | |layout| Global.allocate_zeroed(layout), |
| 646 | <*mut u8>::cast, |
| 647 | )?)) |
| 648 | } |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | impl<T, A: Allocator> Arc<T, A> { |
| 653 | /// Constructs a new `Arc<T>` in the provided allocator. |
| 654 | /// |
| 655 | /// # Examples |
| 656 | /// |
| 657 | /// ``` |
| 658 | /// #![feature(allocator_api)] |
| 659 | /// |
| 660 | /// use std::sync::Arc; |
| 661 | /// use std::alloc::System; |
| 662 | /// |
| 663 | /// let five = Arc::new_in(5, System); |
| 664 | /// ``` |
| 665 | #[inline ] |
| 666 | #[cfg (not(no_global_oom_handling))] |
| 667 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 668 | pub fn new_in(data: T, alloc: A) -> Arc<T, A> { |
| 669 | // Start the weak pointer count as 1 which is the weak pointer that's |
| 670 | // held by all the strong pointers (kinda), see std/rc.rs for more info |
| 671 | let x = Box::new_in( |
| 672 | ArcInner { |
| 673 | strong: atomic::AtomicUsize::new(1), |
| 674 | weak: atomic::AtomicUsize::new(1), |
| 675 | data, |
| 676 | }, |
| 677 | alloc, |
| 678 | ); |
| 679 | let (ptr, alloc) = Box::into_unique(x); |
| 680 | unsafe { Self::from_inner_in(ptr.into(), alloc) } |
| 681 | } |
| 682 | |
| 683 | /// Constructs a new `Arc` with uninitialized contents in the provided allocator. |
| 684 | /// |
| 685 | /// # Examples |
| 686 | /// |
| 687 | /// ``` |
| 688 | /// #![feature(get_mut_unchecked)] |
| 689 | /// #![feature(allocator_api)] |
| 690 | /// |
| 691 | /// use std::sync::Arc; |
| 692 | /// use std::alloc::System; |
| 693 | /// |
| 694 | /// let mut five = Arc::<u32, _>::new_uninit_in(System); |
| 695 | /// |
| 696 | /// let five = unsafe { |
| 697 | /// // Deferred initialization: |
| 698 | /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5); |
| 699 | /// |
| 700 | /// five.assume_init() |
| 701 | /// }; |
| 702 | /// |
| 703 | /// assert_eq!(*five, 5) |
| 704 | /// ``` |
| 705 | #[cfg (not(no_global_oom_handling))] |
| 706 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 707 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 708 | #[inline ] |
| 709 | pub fn new_uninit_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> { |
| 710 | unsafe { |
| 711 | Arc::from_ptr_in( |
| 712 | Arc::allocate_for_layout( |
| 713 | Layout::new::<T>(), |
| 714 | |layout| alloc.allocate(layout), |
| 715 | <*mut u8>::cast, |
| 716 | ), |
| 717 | alloc, |
| 718 | ) |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | /// Constructs a new `Arc` with uninitialized contents, with the memory |
| 723 | /// being filled with `0` bytes, in the provided allocator. |
| 724 | /// |
| 725 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 726 | /// of this method. |
| 727 | /// |
| 728 | /// # Examples |
| 729 | /// |
| 730 | /// ``` |
| 731 | /// #![feature(allocator_api)] |
| 732 | /// |
| 733 | /// use std::sync::Arc; |
| 734 | /// use std::alloc::System; |
| 735 | /// |
| 736 | /// let zero = Arc::<u32, _>::new_zeroed_in(System); |
| 737 | /// let zero = unsafe { zero.assume_init() }; |
| 738 | /// |
| 739 | /// assert_eq!(*zero, 0) |
| 740 | /// ``` |
| 741 | /// |
| 742 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 743 | #[cfg (not(no_global_oom_handling))] |
| 744 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 745 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 746 | #[inline ] |
| 747 | pub fn new_zeroed_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> { |
| 748 | unsafe { |
| 749 | Arc::from_ptr_in( |
| 750 | Arc::allocate_for_layout( |
| 751 | Layout::new::<T>(), |
| 752 | |layout| alloc.allocate_zeroed(layout), |
| 753 | <*mut u8>::cast, |
| 754 | ), |
| 755 | alloc, |
| 756 | ) |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | /// Constructs a new `Arc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation, |
| 761 | /// to allow you to construct a `T` which holds a weak pointer to itself. |
| 762 | /// |
| 763 | /// Generally, a structure circularly referencing itself, either directly or |
| 764 | /// indirectly, should not hold a strong reference to itself to prevent a memory leak. |
| 765 | /// Using this function, you get access to the weak pointer during the |
| 766 | /// initialization of `T`, before the `Arc<T, A>` is created, such that you can |
| 767 | /// clone and store it inside the `T`. |
| 768 | /// |
| 769 | /// `new_cyclic_in` first allocates the managed allocation for the `Arc<T, A>`, |
| 770 | /// then calls your closure, giving it a `Weak<T, A>` to this allocation, |
| 771 | /// and only afterwards completes the construction of the `Arc<T, A>` by placing |
| 772 | /// the `T` returned from your closure into the allocation. |
| 773 | /// |
| 774 | /// Since the new `Arc<T, A>` is not fully-constructed until `Arc<T, A>::new_cyclic_in` |
| 775 | /// returns, calling [`upgrade`] on the weak reference inside your closure will |
| 776 | /// fail and result in a `None` value. |
| 777 | /// |
| 778 | /// # Panics |
| 779 | /// |
| 780 | /// If `data_fn` panics, the panic is propagated to the caller, and the |
| 781 | /// temporary [`Weak<T>`] is dropped normally. |
| 782 | /// |
| 783 | /// # Example |
| 784 | /// |
| 785 | /// See [`new_cyclic`] |
| 786 | /// |
| 787 | /// [`new_cyclic`]: Arc::new_cyclic |
| 788 | /// [`upgrade`]: Weak::upgrade |
| 789 | #[cfg (not(no_global_oom_handling))] |
| 790 | #[inline ] |
| 791 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 792 | pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Arc<T, A> |
| 793 | where |
| 794 | F: FnOnce(&Weak<T, A>) -> T, |
| 795 | { |
| 796 | // Construct the inner in the "uninitialized" state with a single |
| 797 | // weak reference. |
| 798 | let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in( |
| 799 | ArcInner { |
| 800 | strong: atomic::AtomicUsize::new(0), |
| 801 | weak: atomic::AtomicUsize::new(1), |
| 802 | data: mem::MaybeUninit::<T>::uninit(), |
| 803 | }, |
| 804 | alloc, |
| 805 | )); |
| 806 | let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into(); |
| 807 | let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast(); |
| 808 | |
| 809 | let weak = Weak { ptr: init_ptr, alloc }; |
| 810 | |
| 811 | // It's important we don't give up ownership of the weak pointer, or |
| 812 | // else the memory might be freed by the time `data_fn` returns. If |
| 813 | // we really wanted to pass ownership, we could create an additional |
| 814 | // weak pointer for ourselves, but this would result in additional |
| 815 | // updates to the weak reference count which might not be necessary |
| 816 | // otherwise. |
| 817 | let data = data_fn(&weak); |
| 818 | |
| 819 | // Now we can properly initialize the inner value and turn our weak |
| 820 | // reference into a strong reference. |
| 821 | let strong = unsafe { |
| 822 | let inner = init_ptr.as_ptr(); |
| 823 | ptr::write(&raw mut (*inner).data, data); |
| 824 | |
| 825 | // The above write to the data field must be visible to any threads which |
| 826 | // observe a non-zero strong count. Therefore we need at least "Release" ordering |
| 827 | // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`. |
| 828 | // |
| 829 | // "Acquire" ordering is not required. When considering the possible behaviors |
| 830 | // of `data_fn` we only need to look at what it could do with a reference to a |
| 831 | // non-upgradeable `Weak`: |
| 832 | // - It can *clone* the `Weak`, increasing the weak reference count. |
| 833 | // - It can drop those clones, decreasing the weak reference count (but never to zero). |
| 834 | // |
| 835 | // These side effects do not impact us in any way, and no other side effects are |
| 836 | // possible with safe code alone. |
| 837 | let prev_value = (*inner).strong.fetch_add(1, Release); |
| 838 | debug_assert_eq!(prev_value, 0, "No prior strong references should exist" ); |
| 839 | |
| 840 | // Strong references should collectively own a shared weak reference, |
| 841 | // so don't run the destructor for our old weak reference. |
| 842 | // Calling into_raw_with_allocator has the double effect of giving us back the allocator, |
| 843 | // and forgetting the weak reference. |
| 844 | let alloc = weak.into_raw_with_allocator().1; |
| 845 | |
| 846 | Arc::from_inner_in(init_ptr, alloc) |
| 847 | }; |
| 848 | |
| 849 | strong |
| 850 | } |
| 851 | |
| 852 | /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator. If `T` does not implement `Unpin`, |
| 853 | /// then `data` will be pinned in memory and unable to be moved. |
| 854 | #[cfg (not(no_global_oom_handling))] |
| 855 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 856 | #[inline ] |
| 857 | pub fn pin_in(data: T, alloc: A) -> Pin<Arc<T, A>> |
| 858 | where |
| 859 | A: 'static, |
| 860 | { |
| 861 | unsafe { Pin::new_unchecked(Arc::new_in(data, alloc)) } |
| 862 | } |
| 863 | |
| 864 | /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator, return an error if allocation |
| 865 | /// fails. |
| 866 | #[inline ] |
| 867 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 868 | pub fn try_pin_in(data: T, alloc: A) -> Result<Pin<Arc<T, A>>, AllocError> |
| 869 | where |
| 870 | A: 'static, |
| 871 | { |
| 872 | unsafe { Ok(Pin::new_unchecked(Arc::try_new_in(data, alloc)?)) } |
| 873 | } |
| 874 | |
| 875 | /// Constructs a new `Arc<T, A>` in the provided allocator, returning an error if allocation fails. |
| 876 | /// |
| 877 | /// # Examples |
| 878 | /// |
| 879 | /// ``` |
| 880 | /// #![feature(allocator_api)] |
| 881 | /// |
| 882 | /// use std::sync::Arc; |
| 883 | /// use std::alloc::System; |
| 884 | /// |
| 885 | /// let five = Arc::try_new_in(5, System)?; |
| 886 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 887 | /// ``` |
| 888 | #[inline ] |
| 889 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 890 | #[inline ] |
| 891 | pub fn try_new_in(data: T, alloc: A) -> Result<Arc<T, A>, AllocError> { |
| 892 | // Start the weak pointer count as 1 which is the weak pointer that's |
| 893 | // held by all the strong pointers (kinda), see std/rc.rs for more info |
| 894 | let x = Box::try_new_in( |
| 895 | ArcInner { |
| 896 | strong: atomic::AtomicUsize::new(1), |
| 897 | weak: atomic::AtomicUsize::new(1), |
| 898 | data, |
| 899 | }, |
| 900 | alloc, |
| 901 | )?; |
| 902 | let (ptr, alloc) = Box::into_unique(x); |
| 903 | Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) }) |
| 904 | } |
| 905 | |
| 906 | /// Constructs a new `Arc` with uninitialized contents, in the provided allocator, returning an |
| 907 | /// error if allocation fails. |
| 908 | /// |
| 909 | /// # Examples |
| 910 | /// |
| 911 | /// ``` |
| 912 | /// #![feature(allocator_api)] |
| 913 | /// #![feature(get_mut_unchecked)] |
| 914 | /// |
| 915 | /// use std::sync::Arc; |
| 916 | /// use std::alloc::System; |
| 917 | /// |
| 918 | /// let mut five = Arc::<u32, _>::try_new_uninit_in(System)?; |
| 919 | /// |
| 920 | /// let five = unsafe { |
| 921 | /// // Deferred initialization: |
| 922 | /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5); |
| 923 | /// |
| 924 | /// five.assume_init() |
| 925 | /// }; |
| 926 | /// |
| 927 | /// assert_eq!(*five, 5); |
| 928 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 929 | /// ``` |
| 930 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 931 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 932 | #[inline ] |
| 933 | pub fn try_new_uninit_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> { |
| 934 | unsafe { |
| 935 | Ok(Arc::from_ptr_in( |
| 936 | Arc::try_allocate_for_layout( |
| 937 | Layout::new::<T>(), |
| 938 | |layout| alloc.allocate(layout), |
| 939 | <*mut u8>::cast, |
| 940 | )?, |
| 941 | alloc, |
| 942 | )) |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | /// Constructs a new `Arc` with uninitialized contents, with the memory |
| 947 | /// being filled with `0` bytes, in the provided allocator, returning an error if allocation |
| 948 | /// fails. |
| 949 | /// |
| 950 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| 951 | /// of this method. |
| 952 | /// |
| 953 | /// # Examples |
| 954 | /// |
| 955 | /// ``` |
| 956 | /// #![feature(allocator_api)] |
| 957 | /// |
| 958 | /// use std::sync::Arc; |
| 959 | /// use std::alloc::System; |
| 960 | /// |
| 961 | /// let zero = Arc::<u32, _>::try_new_zeroed_in(System)?; |
| 962 | /// let zero = unsafe { zero.assume_init() }; |
| 963 | /// |
| 964 | /// assert_eq!(*zero, 0); |
| 965 | /// # Ok::<(), std::alloc::AllocError>(()) |
| 966 | /// ``` |
| 967 | /// |
| 968 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 969 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 970 | // #[unstable(feature = "new_uninit", issue = "63291")] |
| 971 | #[inline ] |
| 972 | pub fn try_new_zeroed_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> { |
| 973 | unsafe { |
| 974 | Ok(Arc::from_ptr_in( |
| 975 | Arc::try_allocate_for_layout( |
| 976 | Layout::new::<T>(), |
| 977 | |layout| alloc.allocate_zeroed(layout), |
| 978 | <*mut u8>::cast, |
| 979 | )?, |
| 980 | alloc, |
| 981 | )) |
| 982 | } |
| 983 | } |
| 984 | /// Returns the inner value, if the `Arc` has exactly one strong reference. |
| 985 | /// |
| 986 | /// Otherwise, an [`Err`] is returned with the same `Arc` that was |
| 987 | /// passed in. |
| 988 | /// |
| 989 | /// This will succeed even if there are outstanding weak references. |
| 990 | /// |
| 991 | /// It is strongly recommended to use [`Arc::into_inner`] instead if you don't |
| 992 | /// keep the `Arc` in the [`Err`] case. |
| 993 | /// Immediately dropping the [`Err`]-value, as the expression |
| 994 | /// `Arc::try_unwrap(this).ok()` does, can cause the strong count to |
| 995 | /// drop to zero and the inner value of the `Arc` to be dropped. |
| 996 | /// For instance, if two threads execute such an expression in parallel, |
| 997 | /// there is a race condition without the possibility of unsafety: |
| 998 | /// The threads could first both check whether they own the last instance |
| 999 | /// in `Arc::try_unwrap`, determine that they both do not, and then both |
| 1000 | /// discard and drop their instance in the call to [`ok`][`Result::ok`]. |
| 1001 | /// In this scenario, the value inside the `Arc` is safely destroyed |
| 1002 | /// by exactly one of the threads, but neither thread will ever be able |
| 1003 | /// to use the value. |
| 1004 | /// |
| 1005 | /// # Examples |
| 1006 | /// |
| 1007 | /// ``` |
| 1008 | /// use std::sync::Arc; |
| 1009 | /// |
| 1010 | /// let x = Arc::new(3); |
| 1011 | /// assert_eq!(Arc::try_unwrap(x), Ok(3)); |
| 1012 | /// |
| 1013 | /// let x = Arc::new(4); |
| 1014 | /// let _y = Arc::clone(&x); |
| 1015 | /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4); |
| 1016 | /// ``` |
| 1017 | #[inline ] |
| 1018 | #[stable (feature = "arc_unique" , since = "1.4.0" )] |
| 1019 | pub fn try_unwrap(this: Self) -> Result<T, Self> { |
| 1020 | if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() { |
| 1021 | return Err(this); |
| 1022 | } |
| 1023 | |
| 1024 | acquire!(this.inner().strong); |
| 1025 | |
| 1026 | let this = ManuallyDrop::new(this); |
| 1027 | let elem: T = unsafe { ptr::read(&this.ptr.as_ref().data) }; |
| 1028 | let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator |
| 1029 | |
| 1030 | // Make a weak pointer to clean up the implicit strong-weak reference |
| 1031 | let _weak = Weak { ptr: this.ptr, alloc }; |
| 1032 | |
| 1033 | Ok(elem) |
| 1034 | } |
| 1035 | |
| 1036 | /// Returns the inner value, if the `Arc` has exactly one strong reference. |
| 1037 | /// |
| 1038 | /// Otherwise, [`None`] is returned and the `Arc` is dropped. |
| 1039 | /// |
| 1040 | /// This will succeed even if there are outstanding weak references. |
| 1041 | /// |
| 1042 | /// If `Arc::into_inner` is called on every clone of this `Arc`, |
| 1043 | /// it is guaranteed that exactly one of the calls returns the inner value. |
| 1044 | /// This means in particular that the inner value is not dropped. |
| 1045 | /// |
| 1046 | /// [`Arc::try_unwrap`] is conceptually similar to `Arc::into_inner`, but it |
| 1047 | /// is meant for different use-cases. If used as a direct replacement |
| 1048 | /// for `Arc::into_inner` anyway, such as with the expression |
| 1049 | /// <code>[Arc::try_unwrap]\(this).[ok][Result::ok]()</code>, then it does |
| 1050 | /// **not** give the same guarantee as described in the previous paragraph. |
| 1051 | /// For more information, see the examples below and read the documentation |
| 1052 | /// of [`Arc::try_unwrap`]. |
| 1053 | /// |
| 1054 | /// # Examples |
| 1055 | /// |
| 1056 | /// Minimal example demonstrating the guarantee that `Arc::into_inner` gives. |
| 1057 | /// ``` |
| 1058 | /// use std::sync::Arc; |
| 1059 | /// |
| 1060 | /// let x = Arc::new(3); |
| 1061 | /// let y = Arc::clone(&x); |
| 1062 | /// |
| 1063 | /// // Two threads calling `Arc::into_inner` on both clones of an `Arc`: |
| 1064 | /// let x_thread = std::thread::spawn(|| Arc::into_inner(x)); |
| 1065 | /// let y_thread = std::thread::spawn(|| Arc::into_inner(y)); |
| 1066 | /// |
| 1067 | /// let x_inner_value = x_thread.join().unwrap(); |
| 1068 | /// let y_inner_value = y_thread.join().unwrap(); |
| 1069 | /// |
| 1070 | /// // One of the threads is guaranteed to receive the inner value: |
| 1071 | /// assert!(matches!( |
| 1072 | /// (x_inner_value, y_inner_value), |
| 1073 | /// (None, Some(3)) | (Some(3), None) |
| 1074 | /// )); |
| 1075 | /// // The result could also be `(None, None)` if the threads called |
| 1076 | /// // `Arc::try_unwrap(x).ok()` and `Arc::try_unwrap(y).ok()` instead. |
| 1077 | /// ``` |
| 1078 | /// |
| 1079 | /// A more practical example demonstrating the need for `Arc::into_inner`: |
| 1080 | /// ``` |
| 1081 | /// use std::sync::Arc; |
| 1082 | /// |
| 1083 | /// // Definition of a simple singly linked list using `Arc`: |
| 1084 | /// #[derive(Clone)] |
| 1085 | /// struct LinkedList<T>(Option<Arc<Node<T>>>); |
| 1086 | /// struct Node<T>(T, Option<Arc<Node<T>>>); |
| 1087 | /// |
| 1088 | /// // Dropping a long `LinkedList<T>` relying on the destructor of `Arc` |
| 1089 | /// // can cause a stack overflow. To prevent this, we can provide a |
| 1090 | /// // manual `Drop` implementation that does the destruction in a loop: |
| 1091 | /// impl<T> Drop for LinkedList<T> { |
| 1092 | /// fn drop(&mut self) { |
| 1093 | /// let mut link = self.0.take(); |
| 1094 | /// while let Some(arc_node) = link.take() { |
| 1095 | /// if let Some(Node(_value, next)) = Arc::into_inner(arc_node) { |
| 1096 | /// link = next; |
| 1097 | /// } |
| 1098 | /// } |
| 1099 | /// } |
| 1100 | /// } |
| 1101 | /// |
| 1102 | /// // Implementation of `new` and `push` omitted |
| 1103 | /// impl<T> LinkedList<T> { |
| 1104 | /// /* ... */ |
| 1105 | /// # fn new() -> Self { |
| 1106 | /// # LinkedList(None) |
| 1107 | /// # } |
| 1108 | /// # fn push(&mut self, x: T) { |
| 1109 | /// # self.0 = Some(Arc::new(Node(x, self.0.take()))); |
| 1110 | /// # } |
| 1111 | /// } |
| 1112 | /// |
| 1113 | /// // The following code could have still caused a stack overflow |
| 1114 | /// // despite the manual `Drop` impl if that `Drop` impl had used |
| 1115 | /// // `Arc::try_unwrap(arc).ok()` instead of `Arc::into_inner(arc)`. |
| 1116 | /// |
| 1117 | /// // Create a long list and clone it |
| 1118 | /// let mut x = LinkedList::new(); |
| 1119 | /// let size = 100000; |
| 1120 | /// # let size = if cfg!(miri) { 100 } else { size }; |
| 1121 | /// for i in 0..size { |
| 1122 | /// x.push(i); // Adds i to the front of x |
| 1123 | /// } |
| 1124 | /// let y = x.clone(); |
| 1125 | /// |
| 1126 | /// // Drop the clones in parallel |
| 1127 | /// let x_thread = std::thread::spawn(|| drop(x)); |
| 1128 | /// let y_thread = std::thread::spawn(|| drop(y)); |
| 1129 | /// x_thread.join().unwrap(); |
| 1130 | /// y_thread.join().unwrap(); |
| 1131 | /// ``` |
| 1132 | #[inline ] |
| 1133 | #[stable (feature = "arc_into_inner" , since = "1.70.0" )] |
| 1134 | pub fn into_inner(this: Self) -> Option<T> { |
| 1135 | // Make sure that the ordinary `Drop` implementation isn’t called as well |
| 1136 | let mut this = mem::ManuallyDrop::new(this); |
| 1137 | |
| 1138 | // Following the implementation of `drop` and `drop_slow` |
| 1139 | if this.inner().strong.fetch_sub(1, Release) != 1 { |
| 1140 | return None; |
| 1141 | } |
| 1142 | |
| 1143 | acquire!(this.inner().strong); |
| 1144 | |
| 1145 | // SAFETY: This mirrors the line |
| 1146 | // |
| 1147 | // unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) }; |
| 1148 | // |
| 1149 | // in `drop_slow`. Instead of dropping the value behind the pointer, |
| 1150 | // it is read and eventually returned; `ptr::read` has the same |
| 1151 | // safety conditions as `ptr::drop_in_place`. |
| 1152 | |
| 1153 | let inner = unsafe { ptr::read(Self::get_mut_unchecked(&mut this)) }; |
| 1154 | let alloc = unsafe { ptr::read(&this.alloc) }; |
| 1155 | |
| 1156 | drop(Weak { ptr: this.ptr, alloc }); |
| 1157 | |
| 1158 | Some(inner) |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | impl<T> Arc<[T]> { |
| 1163 | /// Constructs a new atomically reference-counted slice with uninitialized contents. |
| 1164 | /// |
| 1165 | /// # Examples |
| 1166 | /// |
| 1167 | /// ``` |
| 1168 | /// #![feature(get_mut_unchecked)] |
| 1169 | /// |
| 1170 | /// use std::sync::Arc; |
| 1171 | /// |
| 1172 | /// let mut values = Arc::<[u32]>::new_uninit_slice(3); |
| 1173 | /// |
| 1174 | /// // Deferred initialization: |
| 1175 | /// let data = Arc::get_mut(&mut values).unwrap(); |
| 1176 | /// data[0].write(1); |
| 1177 | /// data[1].write(2); |
| 1178 | /// data[2].write(3); |
| 1179 | /// |
| 1180 | /// let values = unsafe { values.assume_init() }; |
| 1181 | /// |
| 1182 | /// assert_eq!(*values, [1, 2, 3]) |
| 1183 | /// ``` |
| 1184 | #[cfg (not(no_global_oom_handling))] |
| 1185 | #[inline ] |
| 1186 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 1187 | #[must_use ] |
| 1188 | pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> { |
| 1189 | unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) } |
| 1190 | } |
| 1191 | |
| 1192 | /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being |
| 1193 | /// filled with `0` bytes. |
| 1194 | /// |
| 1195 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
| 1196 | /// incorrect usage of this method. |
| 1197 | /// |
| 1198 | /// # Examples |
| 1199 | /// |
| 1200 | /// ``` |
| 1201 | /// #![feature(new_zeroed_alloc)] |
| 1202 | /// |
| 1203 | /// use std::sync::Arc; |
| 1204 | /// |
| 1205 | /// let values = Arc::<[u32]>::new_zeroed_slice(3); |
| 1206 | /// let values = unsafe { values.assume_init() }; |
| 1207 | /// |
| 1208 | /// assert_eq!(*values, [0, 0, 0]) |
| 1209 | /// ``` |
| 1210 | /// |
| 1211 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 1212 | #[cfg (not(no_global_oom_handling))] |
| 1213 | #[inline ] |
| 1214 | #[unstable (feature = "new_zeroed_alloc" , issue = "129396" )] |
| 1215 | #[must_use ] |
| 1216 | pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> { |
| 1217 | unsafe { |
| 1218 | Arc::from_ptr(Arc::allocate_for_layout( |
| 1219 | Layout::array::<T>(len).unwrap(), |
| 1220 | |layout| Global.allocate_zeroed(layout), |
| 1221 | |mem| { |
| 1222 | ptr::slice_from_raw_parts_mut(mem as *mut T, len) |
| 1223 | as *mut ArcInner<[mem::MaybeUninit<T>]> |
| 1224 | }, |
| 1225 | )) |
| 1226 | } |
| 1227 | } |
| 1228 | |
| 1229 | /// Converts the reference-counted slice into a reference-counted array. |
| 1230 | /// |
| 1231 | /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type. |
| 1232 | /// |
| 1233 | /// If `N` is not exactly equal to the length of `self`, then this method returns `None`. |
| 1234 | #[unstable (feature = "slice_as_array" , issue = "133508" )] |
| 1235 | #[inline ] |
| 1236 | #[must_use ] |
| 1237 | pub fn into_array<const N: usize>(self) -> Option<Arc<[T; N]>> { |
| 1238 | if self.len() == N { |
| 1239 | let ptr = Self::into_raw(self) as *const [T; N]; |
| 1240 | |
| 1241 | // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length. |
| 1242 | let me = unsafe { Arc::from_raw(ptr) }; |
| 1243 | Some(me) |
| 1244 | } else { |
| 1245 | None |
| 1246 | } |
| 1247 | } |
| 1248 | } |
| 1249 | |
| 1250 | impl<T, A: Allocator> Arc<[T], A> { |
| 1251 | /// Constructs a new atomically reference-counted slice with uninitialized contents in the |
| 1252 | /// provided allocator. |
| 1253 | /// |
| 1254 | /// # Examples |
| 1255 | /// |
| 1256 | /// ``` |
| 1257 | /// #![feature(get_mut_unchecked)] |
| 1258 | /// #![feature(allocator_api)] |
| 1259 | /// |
| 1260 | /// use std::sync::Arc; |
| 1261 | /// use std::alloc::System; |
| 1262 | /// |
| 1263 | /// let mut values = Arc::<[u32], _>::new_uninit_slice_in(3, System); |
| 1264 | /// |
| 1265 | /// let values = unsafe { |
| 1266 | /// // Deferred initialization: |
| 1267 | /// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1); |
| 1268 | /// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2); |
| 1269 | /// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3); |
| 1270 | /// |
| 1271 | /// values.assume_init() |
| 1272 | /// }; |
| 1273 | /// |
| 1274 | /// assert_eq!(*values, [1, 2, 3]) |
| 1275 | /// ``` |
| 1276 | #[cfg (not(no_global_oom_handling))] |
| 1277 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1278 | #[inline ] |
| 1279 | pub fn new_uninit_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> { |
| 1280 | unsafe { Arc::from_ptr_in(Arc::allocate_for_slice_in(len, &alloc), alloc) } |
| 1281 | } |
| 1282 | |
| 1283 | /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being |
| 1284 | /// filled with `0` bytes, in the provided allocator. |
| 1285 | /// |
| 1286 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and |
| 1287 | /// incorrect usage of this method. |
| 1288 | /// |
| 1289 | /// # Examples |
| 1290 | /// |
| 1291 | /// ``` |
| 1292 | /// #![feature(allocator_api)] |
| 1293 | /// |
| 1294 | /// use std::sync::Arc; |
| 1295 | /// use std::alloc::System; |
| 1296 | /// |
| 1297 | /// let values = Arc::<[u32], _>::new_zeroed_slice_in(3, System); |
| 1298 | /// let values = unsafe { values.assume_init() }; |
| 1299 | /// |
| 1300 | /// assert_eq!(*values, [0, 0, 0]) |
| 1301 | /// ``` |
| 1302 | /// |
| 1303 | /// [zeroed]: mem::MaybeUninit::zeroed |
| 1304 | #[cfg (not(no_global_oom_handling))] |
| 1305 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1306 | #[inline ] |
| 1307 | pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> { |
| 1308 | unsafe { |
| 1309 | Arc::from_ptr_in( |
| 1310 | Arc::allocate_for_layout( |
| 1311 | Layout::array::<T>(len).unwrap(), |
| 1312 | |layout| alloc.allocate_zeroed(layout), |
| 1313 | |mem| { |
| 1314 | ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) |
| 1315 | as *mut ArcInner<[mem::MaybeUninit<T>]> |
| 1316 | }, |
| 1317 | ), |
| 1318 | alloc, |
| 1319 | ) |
| 1320 | } |
| 1321 | } |
| 1322 | } |
| 1323 | |
| 1324 | impl<T, A: Allocator> Arc<mem::MaybeUninit<T>, A> { |
| 1325 | /// Converts to `Arc<T>`. |
| 1326 | /// |
| 1327 | /// # Safety |
| 1328 | /// |
| 1329 | /// As with [`MaybeUninit::assume_init`], |
| 1330 | /// it is up to the caller to guarantee that the inner value |
| 1331 | /// really is in an initialized state. |
| 1332 | /// Calling this when the content is not yet fully initialized |
| 1333 | /// causes immediate undefined behavior. |
| 1334 | /// |
| 1335 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
| 1336 | /// |
| 1337 | /// # Examples |
| 1338 | /// |
| 1339 | /// ``` |
| 1340 | /// #![feature(get_mut_unchecked)] |
| 1341 | /// |
| 1342 | /// use std::sync::Arc; |
| 1343 | /// |
| 1344 | /// let mut five = Arc::<u32>::new_uninit(); |
| 1345 | /// |
| 1346 | /// // Deferred initialization: |
| 1347 | /// Arc::get_mut(&mut five).unwrap().write(5); |
| 1348 | /// |
| 1349 | /// let five = unsafe { five.assume_init() }; |
| 1350 | /// |
| 1351 | /// assert_eq!(*five, 5) |
| 1352 | /// ``` |
| 1353 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 1354 | #[must_use = "`self` will be dropped if the result is not used" ] |
| 1355 | #[inline ] |
| 1356 | pub unsafe fn assume_init(self) -> Arc<T, A> { |
| 1357 | let (ptr, alloc) = Arc::into_inner_with_allocator(self); |
| 1358 | unsafe { Arc::from_inner_in(ptr.cast(), alloc) } |
| 1359 | } |
| 1360 | } |
| 1361 | |
| 1362 | impl<T, A: Allocator> Arc<[mem::MaybeUninit<T>], A> { |
| 1363 | /// Converts to `Arc<[T]>`. |
| 1364 | /// |
| 1365 | /// # Safety |
| 1366 | /// |
| 1367 | /// As with [`MaybeUninit::assume_init`], |
| 1368 | /// it is up to the caller to guarantee that the inner value |
| 1369 | /// really is in an initialized state. |
| 1370 | /// Calling this when the content is not yet fully initialized |
| 1371 | /// causes immediate undefined behavior. |
| 1372 | /// |
| 1373 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init |
| 1374 | /// |
| 1375 | /// # Examples |
| 1376 | /// |
| 1377 | /// ``` |
| 1378 | /// #![feature(get_mut_unchecked)] |
| 1379 | /// |
| 1380 | /// use std::sync::Arc; |
| 1381 | /// |
| 1382 | /// let mut values = Arc::<[u32]>::new_uninit_slice(3); |
| 1383 | /// |
| 1384 | /// // Deferred initialization: |
| 1385 | /// let data = Arc::get_mut(&mut values).unwrap(); |
| 1386 | /// data[0].write(1); |
| 1387 | /// data[1].write(2); |
| 1388 | /// data[2].write(3); |
| 1389 | /// |
| 1390 | /// let values = unsafe { values.assume_init() }; |
| 1391 | /// |
| 1392 | /// assert_eq!(*values, [1, 2, 3]) |
| 1393 | /// ``` |
| 1394 | #[stable (feature = "new_uninit" , since = "1.82.0" )] |
| 1395 | #[must_use = "`self` will be dropped if the result is not used" ] |
| 1396 | #[inline ] |
| 1397 | pub unsafe fn assume_init(self) -> Arc<[T], A> { |
| 1398 | let (ptr, alloc) = Arc::into_inner_with_allocator(self); |
| 1399 | unsafe { Arc::from_ptr_in(ptr.as_ptr() as _, alloc) } |
| 1400 | } |
| 1401 | } |
| 1402 | |
| 1403 | impl<T: ?Sized> Arc<T> { |
| 1404 | /// Constructs an `Arc<T>` from a raw pointer. |
| 1405 | /// |
| 1406 | /// The raw pointer must have been previously returned by a call to |
| 1407 | /// [`Arc<U>::into_raw`][into_raw] with the following requirements: |
| 1408 | /// |
| 1409 | /// * If `U` is sized, it must have the same size and alignment as `T`. This |
| 1410 | /// is trivially true if `U` is `T`. |
| 1411 | /// * If `U` is unsized, its data pointer must have the same size and |
| 1412 | /// alignment as `T`. This is trivially true if `Arc<U>` was constructed |
| 1413 | /// through `Arc<T>` and then converted to `Arc<U>` through an [unsized |
| 1414 | /// coercion]. |
| 1415 | /// |
| 1416 | /// Note that if `U` or `U`'s data pointer is not `T` but has the same size |
| 1417 | /// and alignment, this is basically like transmuting references of |
| 1418 | /// different types. See [`mem::transmute`][transmute] for more information |
| 1419 | /// on what restrictions apply in this case. |
| 1420 | /// |
| 1421 | /// The raw pointer must point to a block of memory allocated by the global allocator. |
| 1422 | /// |
| 1423 | /// The user of `from_raw` has to make sure a specific value of `T` is only |
| 1424 | /// dropped once. |
| 1425 | /// |
| 1426 | /// This function is unsafe because improper use may lead to memory unsafety, |
| 1427 | /// even if the returned `Arc<T>` is never accessed. |
| 1428 | /// |
| 1429 | /// [into_raw]: Arc::into_raw |
| 1430 | /// [transmute]: core::mem::transmute |
| 1431 | /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions |
| 1432 | /// |
| 1433 | /// # Examples |
| 1434 | /// |
| 1435 | /// ``` |
| 1436 | /// use std::sync::Arc; |
| 1437 | /// |
| 1438 | /// let x = Arc::new("hello" .to_owned()); |
| 1439 | /// let x_ptr = Arc::into_raw(x); |
| 1440 | /// |
| 1441 | /// unsafe { |
| 1442 | /// // Convert back to an `Arc` to prevent leak. |
| 1443 | /// let x = Arc::from_raw(x_ptr); |
| 1444 | /// assert_eq!(&*x, "hello" ); |
| 1445 | /// |
| 1446 | /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe. |
| 1447 | /// } |
| 1448 | /// |
| 1449 | /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling! |
| 1450 | /// ``` |
| 1451 | /// |
| 1452 | /// Convert a slice back into its original array: |
| 1453 | /// |
| 1454 | /// ``` |
| 1455 | /// use std::sync::Arc; |
| 1456 | /// |
| 1457 | /// let x: Arc<[u32]> = Arc::new([1, 2, 3]); |
| 1458 | /// let x_ptr: *const [u32] = Arc::into_raw(x); |
| 1459 | /// |
| 1460 | /// unsafe { |
| 1461 | /// let x: Arc<[u32; 3]> = Arc::from_raw(x_ptr.cast::<[u32; 3]>()); |
| 1462 | /// assert_eq!(&*x, &[1, 2, 3]); |
| 1463 | /// } |
| 1464 | /// ``` |
| 1465 | #[inline ] |
| 1466 | #[stable (feature = "rc_raw" , since = "1.17.0" )] |
| 1467 | pub unsafe fn from_raw(ptr: *const T) -> Self { |
| 1468 | unsafe { Arc::from_raw_in(ptr, Global) } |
| 1469 | } |
| 1470 | |
| 1471 | /// Increments the strong reference count on the `Arc<T>` associated with the |
| 1472 | /// provided pointer by one. |
| 1473 | /// |
| 1474 | /// # Safety |
| 1475 | /// |
| 1476 | /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the |
| 1477 | /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in]. |
| 1478 | /// The associated `Arc` instance must be valid (i.e. the strong count must be at |
| 1479 | /// least 1) for the duration of this method, and `ptr` must point to a block of memory |
| 1480 | /// allocated by the global allocator. |
| 1481 | /// |
| 1482 | /// [from_raw_in]: Arc::from_raw_in |
| 1483 | /// |
| 1484 | /// # Examples |
| 1485 | /// |
| 1486 | /// ``` |
| 1487 | /// use std::sync::Arc; |
| 1488 | /// |
| 1489 | /// let five = Arc::new(5); |
| 1490 | /// |
| 1491 | /// unsafe { |
| 1492 | /// let ptr = Arc::into_raw(five); |
| 1493 | /// Arc::increment_strong_count(ptr); |
| 1494 | /// |
| 1495 | /// // This assertion is deterministic because we haven't shared |
| 1496 | /// // the `Arc` between threads. |
| 1497 | /// let five = Arc::from_raw(ptr); |
| 1498 | /// assert_eq!(2, Arc::strong_count(&five)); |
| 1499 | /// # // Prevent leaks for Miri. |
| 1500 | /// # Arc::decrement_strong_count(ptr); |
| 1501 | /// } |
| 1502 | /// ``` |
| 1503 | #[inline ] |
| 1504 | #[stable (feature = "arc_mutate_strong_count" , since = "1.51.0" )] |
| 1505 | pub unsafe fn increment_strong_count(ptr: *const T) { |
| 1506 | unsafe { Arc::increment_strong_count_in(ptr, Global) } |
| 1507 | } |
| 1508 | |
| 1509 | /// Decrements the strong reference count on the `Arc<T>` associated with the |
| 1510 | /// provided pointer by one. |
| 1511 | /// |
| 1512 | /// # Safety |
| 1513 | /// |
| 1514 | /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the |
| 1515 | /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in]. |
| 1516 | /// The associated `Arc` instance must be valid (i.e. the strong count must be at |
| 1517 | /// least 1) when invoking this method, and `ptr` must point to a block of memory |
| 1518 | /// allocated by the global allocator. This method can be used to release the final |
| 1519 | /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been |
| 1520 | /// released. |
| 1521 | /// |
| 1522 | /// [from_raw_in]: Arc::from_raw_in |
| 1523 | /// |
| 1524 | /// # Examples |
| 1525 | /// |
| 1526 | /// ``` |
| 1527 | /// use std::sync::Arc; |
| 1528 | /// |
| 1529 | /// let five = Arc::new(5); |
| 1530 | /// |
| 1531 | /// unsafe { |
| 1532 | /// let ptr = Arc::into_raw(five); |
| 1533 | /// Arc::increment_strong_count(ptr); |
| 1534 | /// |
| 1535 | /// // Those assertions are deterministic because we haven't shared |
| 1536 | /// // the `Arc` between threads. |
| 1537 | /// let five = Arc::from_raw(ptr); |
| 1538 | /// assert_eq!(2, Arc::strong_count(&five)); |
| 1539 | /// Arc::decrement_strong_count(ptr); |
| 1540 | /// assert_eq!(1, Arc::strong_count(&five)); |
| 1541 | /// } |
| 1542 | /// ``` |
| 1543 | #[inline ] |
| 1544 | #[stable (feature = "arc_mutate_strong_count" , since = "1.51.0" )] |
| 1545 | pub unsafe fn decrement_strong_count(ptr: *const T) { |
| 1546 | unsafe { Arc::decrement_strong_count_in(ptr, Global) } |
| 1547 | } |
| 1548 | } |
| 1549 | |
| 1550 | impl<T: ?Sized, A: Allocator> Arc<T, A> { |
| 1551 | /// Returns a reference to the underlying allocator. |
| 1552 | /// |
| 1553 | /// Note: this is an associated function, which means that you have |
| 1554 | /// to call it as `Arc::allocator(&a)` instead of `a.allocator()`. This |
| 1555 | /// is so that there is no conflict with a method on the inner type. |
| 1556 | #[inline ] |
| 1557 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1558 | pub fn allocator(this: &Self) -> &A { |
| 1559 | &this.alloc |
| 1560 | } |
| 1561 | |
| 1562 | /// Consumes the `Arc`, returning the wrapped pointer. |
| 1563 | /// |
| 1564 | /// To avoid a memory leak the pointer must be converted back to an `Arc` using |
| 1565 | /// [`Arc::from_raw`]. |
| 1566 | /// |
| 1567 | /// # Examples |
| 1568 | /// |
| 1569 | /// ``` |
| 1570 | /// use std::sync::Arc; |
| 1571 | /// |
| 1572 | /// let x = Arc::new("hello" .to_owned()); |
| 1573 | /// let x_ptr = Arc::into_raw(x); |
| 1574 | /// assert_eq!(unsafe { &*x_ptr }, "hello" ); |
| 1575 | /// # // Prevent leaks for Miri. |
| 1576 | /// # drop(unsafe { Arc::from_raw(x_ptr) }); |
| 1577 | /// ``` |
| 1578 | #[must_use = "losing the pointer will leak memory" ] |
| 1579 | #[stable (feature = "rc_raw" , since = "1.17.0" )] |
| 1580 | #[rustc_never_returns_null_ptr ] |
| 1581 | pub fn into_raw(this: Self) -> *const T { |
| 1582 | let this = ManuallyDrop::new(this); |
| 1583 | Self::as_ptr(&*this) |
| 1584 | } |
| 1585 | |
| 1586 | /// Consumes the `Arc`, returning the wrapped pointer and allocator. |
| 1587 | /// |
| 1588 | /// To avoid a memory leak the pointer must be converted back to an `Arc` using |
| 1589 | /// [`Arc::from_raw_in`]. |
| 1590 | /// |
| 1591 | /// # Examples |
| 1592 | /// |
| 1593 | /// ``` |
| 1594 | /// #![feature(allocator_api)] |
| 1595 | /// use std::sync::Arc; |
| 1596 | /// use std::alloc::System; |
| 1597 | /// |
| 1598 | /// let x = Arc::new_in("hello" .to_owned(), System); |
| 1599 | /// let (ptr, alloc) = Arc::into_raw_with_allocator(x); |
| 1600 | /// assert_eq!(unsafe { &*ptr }, "hello" ); |
| 1601 | /// let x = unsafe { Arc::from_raw_in(ptr, alloc) }; |
| 1602 | /// assert_eq!(&*x, "hello" ); |
| 1603 | /// ``` |
| 1604 | #[must_use = "losing the pointer will leak memory" ] |
| 1605 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1606 | pub fn into_raw_with_allocator(this: Self) -> (*const T, A) { |
| 1607 | let this = mem::ManuallyDrop::new(this); |
| 1608 | let ptr = Self::as_ptr(&this); |
| 1609 | // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped |
| 1610 | let alloc = unsafe { ptr::read(&this.alloc) }; |
| 1611 | (ptr, alloc) |
| 1612 | } |
| 1613 | |
| 1614 | /// Provides a raw pointer to the data. |
| 1615 | /// |
| 1616 | /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for |
| 1617 | /// as long as there are strong counts in the `Arc`. |
| 1618 | /// |
| 1619 | /// # Examples |
| 1620 | /// |
| 1621 | /// ``` |
| 1622 | /// use std::sync::Arc; |
| 1623 | /// |
| 1624 | /// let x = Arc::new("hello" .to_owned()); |
| 1625 | /// let y = Arc::clone(&x); |
| 1626 | /// let x_ptr = Arc::as_ptr(&x); |
| 1627 | /// assert_eq!(x_ptr, Arc::as_ptr(&y)); |
| 1628 | /// assert_eq!(unsafe { &*x_ptr }, "hello" ); |
| 1629 | /// ``` |
| 1630 | #[must_use ] |
| 1631 | #[stable (feature = "rc_as_ptr" , since = "1.45.0" )] |
| 1632 | #[rustc_never_returns_null_ptr ] |
| 1633 | pub fn as_ptr(this: &Self) -> *const T { |
| 1634 | let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr); |
| 1635 | |
| 1636 | // SAFETY: This cannot go through Deref::deref or RcInnerPtr::inner because |
| 1637 | // this is required to retain raw/mut provenance such that e.g. `get_mut` can |
| 1638 | // write through the pointer after the Rc is recovered through `from_raw`. |
| 1639 | unsafe { &raw mut (*ptr).data } |
| 1640 | } |
| 1641 | |
| 1642 | /// Constructs an `Arc<T, A>` from a raw pointer. |
| 1643 | /// |
| 1644 | /// The raw pointer must have been previously returned by a call to [`Arc<U, |
| 1645 | /// A>::into_raw`][into_raw] with the following requirements: |
| 1646 | /// |
| 1647 | /// * If `U` is sized, it must have the same size and alignment as `T`. This |
| 1648 | /// is trivially true if `U` is `T`. |
| 1649 | /// * If `U` is unsized, its data pointer must have the same size and |
| 1650 | /// alignment as `T`. This is trivially true if `Arc<U>` was constructed |
| 1651 | /// through `Arc<T>` and then converted to `Arc<U>` through an [unsized |
| 1652 | /// coercion]. |
| 1653 | /// |
| 1654 | /// Note that if `U` or `U`'s data pointer is not `T` but has the same size |
| 1655 | /// and alignment, this is basically like transmuting references of |
| 1656 | /// different types. See [`mem::transmute`][transmute] for more information |
| 1657 | /// on what restrictions apply in this case. |
| 1658 | /// |
| 1659 | /// The raw pointer must point to a block of memory allocated by `alloc` |
| 1660 | /// |
| 1661 | /// The user of `from_raw` has to make sure a specific value of `T` is only |
| 1662 | /// dropped once. |
| 1663 | /// |
| 1664 | /// This function is unsafe because improper use may lead to memory unsafety, |
| 1665 | /// even if the returned `Arc<T>` is never accessed. |
| 1666 | /// |
| 1667 | /// [into_raw]: Arc::into_raw |
| 1668 | /// [transmute]: core::mem::transmute |
| 1669 | /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions |
| 1670 | /// |
| 1671 | /// # Examples |
| 1672 | /// |
| 1673 | /// ``` |
| 1674 | /// #![feature(allocator_api)] |
| 1675 | /// |
| 1676 | /// use std::sync::Arc; |
| 1677 | /// use std::alloc::System; |
| 1678 | /// |
| 1679 | /// let x = Arc::new_in("hello" .to_owned(), System); |
| 1680 | /// let x_ptr = Arc::into_raw(x); |
| 1681 | /// |
| 1682 | /// unsafe { |
| 1683 | /// // Convert back to an `Arc` to prevent leak. |
| 1684 | /// let x = Arc::from_raw_in(x_ptr, System); |
| 1685 | /// assert_eq!(&*x, "hello" ); |
| 1686 | /// |
| 1687 | /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe. |
| 1688 | /// } |
| 1689 | /// |
| 1690 | /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling! |
| 1691 | /// ``` |
| 1692 | /// |
| 1693 | /// Convert a slice back into its original array: |
| 1694 | /// |
| 1695 | /// ``` |
| 1696 | /// #![feature(allocator_api)] |
| 1697 | /// |
| 1698 | /// use std::sync::Arc; |
| 1699 | /// use std::alloc::System; |
| 1700 | /// |
| 1701 | /// let x: Arc<[u32], _> = Arc::new_in([1, 2, 3], System); |
| 1702 | /// let x_ptr: *const [u32] = Arc::into_raw(x); |
| 1703 | /// |
| 1704 | /// unsafe { |
| 1705 | /// let x: Arc<[u32; 3], _> = Arc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System); |
| 1706 | /// assert_eq!(&*x, &[1, 2, 3]); |
| 1707 | /// } |
| 1708 | /// ``` |
| 1709 | #[inline ] |
| 1710 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1711 | pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self { |
| 1712 | unsafe { |
| 1713 | let offset = data_offset(ptr); |
| 1714 | |
| 1715 | // Reverse the offset to find the original ArcInner. |
| 1716 | let arc_ptr = ptr.byte_sub(offset) as *mut ArcInner<T>; |
| 1717 | |
| 1718 | Self::from_ptr_in(arc_ptr, alloc) |
| 1719 | } |
| 1720 | } |
| 1721 | |
| 1722 | /// Creates a new [`Weak`] pointer to this allocation. |
| 1723 | /// |
| 1724 | /// # Examples |
| 1725 | /// |
| 1726 | /// ``` |
| 1727 | /// use std::sync::Arc; |
| 1728 | /// |
| 1729 | /// let five = Arc::new(5); |
| 1730 | /// |
| 1731 | /// let weak_five = Arc::downgrade(&five); |
| 1732 | /// ``` |
| 1733 | #[must_use = "this returns a new `Weak` pointer, \ |
| 1734 | without modifying the original `Arc`" ] |
| 1735 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
| 1736 | pub fn downgrade(this: &Self) -> Weak<T, A> |
| 1737 | where |
| 1738 | A: Clone, |
| 1739 | { |
| 1740 | // This Relaxed is OK because we're checking the value in the CAS |
| 1741 | // below. |
| 1742 | let mut cur = this.inner().weak.load(Relaxed); |
| 1743 | |
| 1744 | loop { |
| 1745 | // check if the weak counter is currently "locked"; if so, spin. |
| 1746 | if cur == usize::MAX { |
| 1747 | hint::spin_loop(); |
| 1748 | cur = this.inner().weak.load(Relaxed); |
| 1749 | continue; |
| 1750 | } |
| 1751 | |
| 1752 | // We can't allow the refcount to increase much past `MAX_REFCOUNT`. |
| 1753 | assert!(cur <= MAX_REFCOUNT, "{}" , INTERNAL_OVERFLOW_ERROR); |
| 1754 | |
| 1755 | // NOTE: this code currently ignores the possibility of overflow |
| 1756 | // into usize::MAX; in general both Rc and Arc need to be adjusted |
| 1757 | // to deal with overflow. |
| 1758 | |
| 1759 | // Unlike with Clone(), we need this to be an Acquire read to |
| 1760 | // synchronize with the write coming from `is_unique`, so that the |
| 1761 | // events prior to that write happen before this read. |
| 1762 | match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) { |
| 1763 | Ok(_) => { |
| 1764 | // Make sure we do not create a dangling Weak |
| 1765 | debug_assert!(!is_dangling(this.ptr.as_ptr())); |
| 1766 | return Weak { ptr: this.ptr, alloc: this.alloc.clone() }; |
| 1767 | } |
| 1768 | Err(old) => cur = old, |
| 1769 | } |
| 1770 | } |
| 1771 | } |
| 1772 | |
| 1773 | /// Gets the number of [`Weak`] pointers to this allocation. |
| 1774 | /// |
| 1775 | /// # Safety |
| 1776 | /// |
| 1777 | /// This method by itself is safe, but using it correctly requires extra care. |
| 1778 | /// Another thread can change the weak count at any time, |
| 1779 | /// including potentially between calling this method and acting on the result. |
| 1780 | /// |
| 1781 | /// # Examples |
| 1782 | /// |
| 1783 | /// ``` |
| 1784 | /// use std::sync::Arc; |
| 1785 | /// |
| 1786 | /// let five = Arc::new(5); |
| 1787 | /// let _weak_five = Arc::downgrade(&five); |
| 1788 | /// |
| 1789 | /// // This assertion is deterministic because we haven't shared |
| 1790 | /// // the `Arc` or `Weak` between threads. |
| 1791 | /// assert_eq!(1, Arc::weak_count(&five)); |
| 1792 | /// ``` |
| 1793 | #[inline ] |
| 1794 | #[must_use ] |
| 1795 | #[stable (feature = "arc_counts" , since = "1.15.0" )] |
| 1796 | pub fn weak_count(this: &Self) -> usize { |
| 1797 | let cnt = this.inner().weak.load(Relaxed); |
| 1798 | // If the weak count is currently locked, the value of the |
| 1799 | // count was 0 just before taking the lock. |
| 1800 | if cnt == usize::MAX { 0 } else { cnt - 1 } |
| 1801 | } |
| 1802 | |
| 1803 | /// Gets the number of strong (`Arc`) pointers to this allocation. |
| 1804 | /// |
| 1805 | /// # Safety |
| 1806 | /// |
| 1807 | /// This method by itself is safe, but using it correctly requires extra care. |
| 1808 | /// Another thread can change the strong count at any time, |
| 1809 | /// including potentially between calling this method and acting on the result. |
| 1810 | /// |
| 1811 | /// # Examples |
| 1812 | /// |
| 1813 | /// ``` |
| 1814 | /// use std::sync::Arc; |
| 1815 | /// |
| 1816 | /// let five = Arc::new(5); |
| 1817 | /// let _also_five = Arc::clone(&five); |
| 1818 | /// |
| 1819 | /// // This assertion is deterministic because we haven't shared |
| 1820 | /// // the `Arc` between threads. |
| 1821 | /// assert_eq!(2, Arc::strong_count(&five)); |
| 1822 | /// ``` |
| 1823 | #[inline ] |
| 1824 | #[must_use ] |
| 1825 | #[stable (feature = "arc_counts" , since = "1.15.0" )] |
| 1826 | pub fn strong_count(this: &Self) -> usize { |
| 1827 | this.inner().strong.load(Relaxed) |
| 1828 | } |
| 1829 | |
| 1830 | /// Increments the strong reference count on the `Arc<T>` associated with the |
| 1831 | /// provided pointer by one. |
| 1832 | /// |
| 1833 | /// # Safety |
| 1834 | /// |
| 1835 | /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the |
| 1836 | /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in]. |
| 1837 | /// The associated `Arc` instance must be valid (i.e. the strong count must be at |
| 1838 | /// least 1) for the duration of this method, and `ptr` must point to a block of memory |
| 1839 | /// allocated by `alloc`. |
| 1840 | /// |
| 1841 | /// [from_raw_in]: Arc::from_raw_in |
| 1842 | /// |
| 1843 | /// # Examples |
| 1844 | /// |
| 1845 | /// ``` |
| 1846 | /// #![feature(allocator_api)] |
| 1847 | /// |
| 1848 | /// use std::sync::Arc; |
| 1849 | /// use std::alloc::System; |
| 1850 | /// |
| 1851 | /// let five = Arc::new_in(5, System); |
| 1852 | /// |
| 1853 | /// unsafe { |
| 1854 | /// let ptr = Arc::into_raw(five); |
| 1855 | /// Arc::increment_strong_count_in(ptr, System); |
| 1856 | /// |
| 1857 | /// // This assertion is deterministic because we haven't shared |
| 1858 | /// // the `Arc` between threads. |
| 1859 | /// let five = Arc::from_raw_in(ptr, System); |
| 1860 | /// assert_eq!(2, Arc::strong_count(&five)); |
| 1861 | /// # // Prevent leaks for Miri. |
| 1862 | /// # Arc::decrement_strong_count_in(ptr, System); |
| 1863 | /// } |
| 1864 | /// ``` |
| 1865 | #[inline ] |
| 1866 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1867 | pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A) |
| 1868 | where |
| 1869 | A: Clone, |
| 1870 | { |
| 1871 | // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop |
| 1872 | let arc = unsafe { mem::ManuallyDrop::new(Arc::from_raw_in(ptr, alloc)) }; |
| 1873 | // Now increase refcount, but don't drop new refcount either |
| 1874 | let _arc_clone: mem::ManuallyDrop<_> = arc.clone(); |
| 1875 | } |
| 1876 | |
| 1877 | /// Decrements the strong reference count on the `Arc<T>` associated with the |
| 1878 | /// provided pointer by one. |
| 1879 | /// |
| 1880 | /// # Safety |
| 1881 | /// |
| 1882 | /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the |
| 1883 | /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in]. |
| 1884 | /// The associated `Arc` instance must be valid (i.e. the strong count must be at |
| 1885 | /// least 1) when invoking this method, and `ptr` must point to a block of memory |
| 1886 | /// allocated by `alloc`. This method can be used to release the final |
| 1887 | /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been |
| 1888 | /// released. |
| 1889 | /// |
| 1890 | /// [from_raw_in]: Arc::from_raw_in |
| 1891 | /// |
| 1892 | /// # Examples |
| 1893 | /// |
| 1894 | /// ``` |
| 1895 | /// #![feature(allocator_api)] |
| 1896 | /// |
| 1897 | /// use std::sync::Arc; |
| 1898 | /// use std::alloc::System; |
| 1899 | /// |
| 1900 | /// let five = Arc::new_in(5, System); |
| 1901 | /// |
| 1902 | /// unsafe { |
| 1903 | /// let ptr = Arc::into_raw(five); |
| 1904 | /// Arc::increment_strong_count_in(ptr, System); |
| 1905 | /// |
| 1906 | /// // Those assertions are deterministic because we haven't shared |
| 1907 | /// // the `Arc` between threads. |
| 1908 | /// let five = Arc::from_raw_in(ptr, System); |
| 1909 | /// assert_eq!(2, Arc::strong_count(&five)); |
| 1910 | /// Arc::decrement_strong_count_in(ptr, System); |
| 1911 | /// assert_eq!(1, Arc::strong_count(&five)); |
| 1912 | /// } |
| 1913 | /// ``` |
| 1914 | #[inline ] |
| 1915 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1916 | pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) { |
| 1917 | unsafe { drop(Arc::from_raw_in(ptr, alloc)) }; |
| 1918 | } |
| 1919 | |
| 1920 | #[inline ] |
| 1921 | fn inner(&self) -> &ArcInner<T> { |
| 1922 | // This unsafety is ok because while this arc is alive we're guaranteed |
| 1923 | // that the inner pointer is valid. Furthermore, we know that the |
| 1924 | // `ArcInner` structure itself is `Sync` because the inner data is |
| 1925 | // `Sync` as well, so we're ok loaning out an immutable pointer to these |
| 1926 | // contents. |
| 1927 | unsafe { self.ptr.as_ref() } |
| 1928 | } |
| 1929 | |
| 1930 | // Non-inlined part of `drop`. |
| 1931 | #[inline (never)] |
| 1932 | unsafe fn drop_slow(&mut self) { |
| 1933 | // Drop the weak ref collectively held by all strong references when this |
| 1934 | // variable goes out of scope. This ensures that the memory is deallocated |
| 1935 | // even if the destructor of `T` panics. |
| 1936 | // Take a reference to `self.alloc` instead of cloning because 1. it'll last long |
| 1937 | // enough, and 2. you should be able to drop `Arc`s with unclonable allocators |
| 1938 | let _weak = Weak { ptr: self.ptr, alloc: &self.alloc }; |
| 1939 | |
| 1940 | // Destroy the data at this time, even though we must not free the box |
| 1941 | // allocation itself (there might still be weak pointers lying around). |
| 1942 | // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed. |
| 1943 | unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) }; |
| 1944 | } |
| 1945 | |
| 1946 | /// Returns `true` if the two `Arc`s point to the same allocation in a vein similar to |
| 1947 | /// [`ptr::eq`]. This function ignores the metadata of `dyn Trait` pointers. |
| 1948 | /// |
| 1949 | /// # Examples |
| 1950 | /// |
| 1951 | /// ``` |
| 1952 | /// use std::sync::Arc; |
| 1953 | /// |
| 1954 | /// let five = Arc::new(5); |
| 1955 | /// let same_five = Arc::clone(&five); |
| 1956 | /// let other_five = Arc::new(5); |
| 1957 | /// |
| 1958 | /// assert!(Arc::ptr_eq(&five, &same_five)); |
| 1959 | /// assert!(!Arc::ptr_eq(&five, &other_five)); |
| 1960 | /// ``` |
| 1961 | /// |
| 1962 | /// [`ptr::eq`]: core::ptr::eq "ptr::eq" |
| 1963 | #[inline ] |
| 1964 | #[must_use ] |
| 1965 | #[stable (feature = "ptr_eq" , since = "1.17.0" )] |
| 1966 | pub fn ptr_eq(this: &Self, other: &Self) -> bool { |
| 1967 | ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr()) |
| 1968 | } |
| 1969 | } |
| 1970 | |
| 1971 | impl<T: ?Sized> Arc<T> { |
| 1972 | /// Allocates an `ArcInner<T>` with sufficient space for |
| 1973 | /// a possibly-unsized inner value where the value has the layout provided. |
| 1974 | /// |
| 1975 | /// The function `mem_to_arcinner` is called with the data pointer |
| 1976 | /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`. |
| 1977 | #[cfg (not(no_global_oom_handling))] |
| 1978 | unsafe fn allocate_for_layout( |
| 1979 | value_layout: Layout, |
| 1980 | allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>, |
| 1981 | mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>, |
| 1982 | ) -> *mut ArcInner<T> { |
| 1983 | let layout = arcinner_layout_for_value_layout(value_layout); |
| 1984 | |
| 1985 | let ptr = allocate(layout).unwrap_or_else(|_| handle_alloc_error(layout)); |
| 1986 | |
| 1987 | unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) } |
| 1988 | } |
| 1989 | |
| 1990 | /// Allocates an `ArcInner<T>` with sufficient space for |
| 1991 | /// a possibly-unsized inner value where the value has the layout provided, |
| 1992 | /// returning an error if allocation fails. |
| 1993 | /// |
| 1994 | /// The function `mem_to_arcinner` is called with the data pointer |
| 1995 | /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`. |
| 1996 | unsafe fn try_allocate_for_layout( |
| 1997 | value_layout: Layout, |
| 1998 | allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>, |
| 1999 | mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>, |
| 2000 | ) -> Result<*mut ArcInner<T>, AllocError> { |
| 2001 | let layout = arcinner_layout_for_value_layout(value_layout); |
| 2002 | |
| 2003 | let ptr = allocate(layout)?; |
| 2004 | |
| 2005 | let inner = unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) }; |
| 2006 | |
| 2007 | Ok(inner) |
| 2008 | } |
| 2009 | |
| 2010 | unsafe fn initialize_arcinner( |
| 2011 | ptr: NonNull<[u8]>, |
| 2012 | layout: Layout, |
| 2013 | mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>, |
| 2014 | ) -> *mut ArcInner<T> { |
| 2015 | let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr()); |
| 2016 | debug_assert_eq!(unsafe { Layout::for_value_raw(inner) }, layout); |
| 2017 | |
| 2018 | unsafe { |
| 2019 | (&raw mut (*inner).strong).write(atomic::AtomicUsize::new(1)); |
| 2020 | (&raw mut (*inner).weak).write(atomic::AtomicUsize::new(1)); |
| 2021 | } |
| 2022 | |
| 2023 | inner |
| 2024 | } |
| 2025 | } |
| 2026 | |
| 2027 | impl<T: ?Sized, A: Allocator> Arc<T, A> { |
| 2028 | /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value. |
| 2029 | #[inline ] |
| 2030 | #[cfg (not(no_global_oom_handling))] |
| 2031 | unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut ArcInner<T> { |
| 2032 | // Allocate for the `ArcInner<T>` using the given value. |
| 2033 | unsafe { |
| 2034 | Arc::allocate_for_layout( |
| 2035 | Layout::for_value_raw(ptr), |
| 2036 | |layout| alloc.allocate(layout), |
| 2037 | |mem| mem.with_metadata_of(ptr as *const ArcInner<T>), |
| 2038 | ) |
| 2039 | } |
| 2040 | } |
| 2041 | |
| 2042 | #[cfg (not(no_global_oom_handling))] |
| 2043 | fn from_box_in(src: Box<T, A>) -> Arc<T, A> { |
| 2044 | unsafe { |
| 2045 | let value_size = size_of_val(&*src); |
| 2046 | let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src)); |
| 2047 | |
| 2048 | // Copy value as bytes |
| 2049 | ptr::copy_nonoverlapping( |
| 2050 | (&raw const *src) as *const u8, |
| 2051 | (&raw mut (*ptr).data) as *mut u8, |
| 2052 | value_size, |
| 2053 | ); |
| 2054 | |
| 2055 | // Free the allocation without dropping its contents |
| 2056 | let (bptr, alloc) = Box::into_raw_with_allocator(src); |
| 2057 | let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref()); |
| 2058 | drop(src); |
| 2059 | |
| 2060 | Self::from_ptr_in(ptr, alloc) |
| 2061 | } |
| 2062 | } |
| 2063 | } |
| 2064 | |
| 2065 | impl<T> Arc<[T]> { |
| 2066 | /// Allocates an `ArcInner<[T]>` with the given length. |
| 2067 | #[cfg (not(no_global_oom_handling))] |
| 2068 | unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> { |
| 2069 | unsafe { |
| 2070 | Self::allocate_for_layout( |
| 2071 | Layout::array::<T>(len).unwrap(), |
| 2072 | |layout| Global.allocate(layout), |
| 2073 | |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>, |
| 2074 | ) |
| 2075 | } |
| 2076 | } |
| 2077 | |
| 2078 | /// Copy elements from slice into newly allocated `Arc<[T]>` |
| 2079 | /// |
| 2080 | /// Unsafe because the caller must either take ownership or bind `T: Copy`. |
| 2081 | #[cfg (not(no_global_oom_handling))] |
| 2082 | unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> { |
| 2083 | unsafe { |
| 2084 | let ptr = Self::allocate_for_slice(v.len()); |
| 2085 | |
| 2086 | ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).data) as *mut T, v.len()); |
| 2087 | |
| 2088 | Self::from_ptr(ptr) |
| 2089 | } |
| 2090 | } |
| 2091 | |
| 2092 | /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size. |
| 2093 | /// |
| 2094 | /// Behavior is undefined should the size be wrong. |
| 2095 | #[cfg (not(no_global_oom_handling))] |
| 2096 | unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Arc<[T]> { |
| 2097 | // Panic guard while cloning T elements. |
| 2098 | // In the event of a panic, elements that have been written |
| 2099 | // into the new ArcInner will be dropped, then the memory freed. |
| 2100 | struct Guard<T> { |
| 2101 | mem: NonNull<u8>, |
| 2102 | elems: *mut T, |
| 2103 | layout: Layout, |
| 2104 | n_elems: usize, |
| 2105 | } |
| 2106 | |
| 2107 | impl<T> Drop for Guard<T> { |
| 2108 | fn drop(&mut self) { |
| 2109 | unsafe { |
| 2110 | let slice = from_raw_parts_mut(self.elems, self.n_elems); |
| 2111 | ptr::drop_in_place(slice); |
| 2112 | |
| 2113 | Global.deallocate(self.mem, self.layout); |
| 2114 | } |
| 2115 | } |
| 2116 | } |
| 2117 | |
| 2118 | unsafe { |
| 2119 | let ptr = Self::allocate_for_slice(len); |
| 2120 | |
| 2121 | let mem = ptr as *mut _ as *mut u8; |
| 2122 | let layout = Layout::for_value_raw(ptr); |
| 2123 | |
| 2124 | // Pointer to first element |
| 2125 | let elems = (&raw mut (*ptr).data) as *mut T; |
| 2126 | |
| 2127 | let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 }; |
| 2128 | |
| 2129 | for (i, item) in iter.enumerate() { |
| 2130 | ptr::write(elems.add(i), item); |
| 2131 | guard.n_elems += 1; |
| 2132 | } |
| 2133 | |
| 2134 | // All clear. Forget the guard so it doesn't free the new ArcInner. |
| 2135 | mem::forget(guard); |
| 2136 | |
| 2137 | Self::from_ptr(ptr) |
| 2138 | } |
| 2139 | } |
| 2140 | } |
| 2141 | |
| 2142 | impl<T, A: Allocator> Arc<[T], A> { |
| 2143 | /// Allocates an `ArcInner<[T]>` with the given length. |
| 2144 | #[inline ] |
| 2145 | #[cfg (not(no_global_oom_handling))] |
| 2146 | unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut ArcInner<[T]> { |
| 2147 | unsafe { |
| 2148 | Arc::allocate_for_layout( |
| 2149 | value_layout:Layout::array::<T>(len).unwrap(), |
| 2150 | |layout| alloc.allocate(layout), |
| 2151 | |mem: *mut u8| ptr::slice_from_raw_parts_mut(data:mem.cast::<T>(), len) as *mut ArcInner<[T]>, |
| 2152 | ) |
| 2153 | } |
| 2154 | } |
| 2155 | } |
| 2156 | |
| 2157 | /// Specialization trait used for `From<&[T]>`. |
| 2158 | #[cfg (not(no_global_oom_handling))] |
| 2159 | trait ArcFromSlice<T> { |
| 2160 | fn from_slice(slice: &[T]) -> Self; |
| 2161 | } |
| 2162 | |
| 2163 | #[cfg (not(no_global_oom_handling))] |
| 2164 | impl<T: Clone> ArcFromSlice<T> for Arc<[T]> { |
| 2165 | #[inline ] |
| 2166 | default fn from_slice(v: &[T]) -> Self { |
| 2167 | unsafe { Self::from_iter_exact(iter:v.iter().cloned(), v.len()) } |
| 2168 | } |
| 2169 | } |
| 2170 | |
| 2171 | #[cfg (not(no_global_oom_handling))] |
| 2172 | impl<T: Copy> ArcFromSlice<T> for Arc<[T]> { |
| 2173 | #[inline ] |
| 2174 | fn from_slice(v: &[T]) -> Self { |
| 2175 | unsafe { Arc::copy_from_slice(v) } |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2180 | impl<T: ?Sized, A: Allocator + Clone> Clone for Arc<T, A> { |
| 2181 | /// Makes a clone of the `Arc` pointer. |
| 2182 | /// |
| 2183 | /// This creates another pointer to the same allocation, increasing the |
| 2184 | /// strong reference count. |
| 2185 | /// |
| 2186 | /// # Examples |
| 2187 | /// |
| 2188 | /// ``` |
| 2189 | /// use std::sync::Arc; |
| 2190 | /// |
| 2191 | /// let five = Arc::new(5); |
| 2192 | /// |
| 2193 | /// let _ = Arc::clone(&five); |
| 2194 | /// ``` |
| 2195 | #[inline ] |
| 2196 | fn clone(&self) -> Arc<T, A> { |
| 2197 | // Using a relaxed ordering is alright here, as knowledge of the |
| 2198 | // original reference prevents other threads from erroneously deleting |
| 2199 | // the object. |
| 2200 | // |
| 2201 | // As explained in the [Boost documentation][1], Increasing the |
| 2202 | // reference counter can always be done with memory_order_relaxed: New |
| 2203 | // references to an object can only be formed from an existing |
| 2204 | // reference, and passing an existing reference from one thread to |
| 2205 | // another must already provide any required synchronization. |
| 2206 | // |
| 2207 | // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) |
| 2208 | let old_size = self.inner().strong.fetch_add(1, Relaxed); |
| 2209 | |
| 2210 | // However we need to guard against massive refcounts in case someone is `mem::forget`ing |
| 2211 | // Arcs. If we don't do this the count can overflow and users will use-after free. This |
| 2212 | // branch will never be taken in any realistic program. We abort because such a program is |
| 2213 | // incredibly degenerate, and we don't care to support it. |
| 2214 | // |
| 2215 | // This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`. |
| 2216 | // But we do that check *after* having done the increment, so there is a chance here that |
| 2217 | // the worst already happened and we actually do overflow the `usize` counter. However, that |
| 2218 | // requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment |
| 2219 | // above and the `abort` below, which seems exceedingly unlikely. |
| 2220 | // |
| 2221 | // This is a global invariant, and also applies when using a compare-exchange loop to increment |
| 2222 | // counters in other methods. |
| 2223 | // Otherwise, the counter could be brought to an almost-overflow using a compare-exchange loop, |
| 2224 | // and then overflow using a few `fetch_add`s. |
| 2225 | if old_size > MAX_REFCOUNT { |
| 2226 | abort(); |
| 2227 | } |
| 2228 | |
| 2229 | unsafe { Self::from_inner_in(self.ptr, self.alloc.clone()) } |
| 2230 | } |
| 2231 | } |
| 2232 | |
| 2233 | #[unstable (feature = "ergonomic_clones" , issue = "132290" )] |
| 2234 | impl<T: ?Sized, A: Allocator + Clone> UseCloned for Arc<T, A> {} |
| 2235 | |
| 2236 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2237 | impl<T: ?Sized, A: Allocator> Deref for Arc<T, A> { |
| 2238 | type Target = T; |
| 2239 | |
| 2240 | #[inline ] |
| 2241 | fn deref(&self) -> &T { |
| 2242 | &self.inner().data |
| 2243 | } |
| 2244 | } |
| 2245 | |
| 2246 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2247 | unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Arc<T, A> {} |
| 2248 | |
| 2249 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 2250 | unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {} |
| 2251 | |
| 2252 | #[unstable (feature = "deref_pure_trait" , issue = "87121" )] |
| 2253 | unsafe impl<T: ?Sized, A: Allocator> DerefPure for Arc<T, A> {} |
| 2254 | |
| 2255 | #[unstable (feature = "legacy_receiver_trait" , issue = "none" )] |
| 2256 | impl<T: ?Sized> LegacyReceiver for Arc<T> {} |
| 2257 | |
| 2258 | #[cfg (not(no_global_oom_handling))] |
| 2259 | impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Arc<T, A> { |
| 2260 | /// Makes a mutable reference into the given `Arc`. |
| 2261 | /// |
| 2262 | /// If there are other `Arc` pointers to the same allocation, then `make_mut` will |
| 2263 | /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also |
| 2264 | /// referred to as clone-on-write. |
| 2265 | /// |
| 2266 | /// However, if there are no other `Arc` pointers to this allocation, but some [`Weak`] |
| 2267 | /// pointers, then the [`Weak`] pointers will be dissociated and the inner value will not |
| 2268 | /// be cloned. |
| 2269 | /// |
| 2270 | /// See also [`get_mut`], which will fail rather than cloning the inner value |
| 2271 | /// or dissociating [`Weak`] pointers. |
| 2272 | /// |
| 2273 | /// [`clone`]: Clone::clone |
| 2274 | /// [`get_mut`]: Arc::get_mut |
| 2275 | /// |
| 2276 | /// # Examples |
| 2277 | /// |
| 2278 | /// ``` |
| 2279 | /// use std::sync::Arc; |
| 2280 | /// |
| 2281 | /// let mut data = Arc::new(5); |
| 2282 | /// |
| 2283 | /// *Arc::make_mut(&mut data) += 1; // Won't clone anything |
| 2284 | /// let mut other_data = Arc::clone(&data); // Won't clone inner data |
| 2285 | /// *Arc::make_mut(&mut data) += 1; // Clones inner data |
| 2286 | /// *Arc::make_mut(&mut data) += 1; // Won't clone anything |
| 2287 | /// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything |
| 2288 | /// |
| 2289 | /// // Now `data` and `other_data` point to different allocations. |
| 2290 | /// assert_eq!(*data, 8); |
| 2291 | /// assert_eq!(*other_data, 12); |
| 2292 | /// ``` |
| 2293 | /// |
| 2294 | /// [`Weak`] pointers will be dissociated: |
| 2295 | /// |
| 2296 | /// ``` |
| 2297 | /// use std::sync::Arc; |
| 2298 | /// |
| 2299 | /// let mut data = Arc::new(75); |
| 2300 | /// let weak = Arc::downgrade(&data); |
| 2301 | /// |
| 2302 | /// assert!(75 == *data); |
| 2303 | /// assert!(75 == *weak.upgrade().unwrap()); |
| 2304 | /// |
| 2305 | /// *Arc::make_mut(&mut data) += 1; |
| 2306 | /// |
| 2307 | /// assert!(76 == *data); |
| 2308 | /// assert!(weak.upgrade().is_none()); |
| 2309 | /// ``` |
| 2310 | #[inline ] |
| 2311 | #[stable (feature = "arc_unique" , since = "1.4.0" )] |
| 2312 | pub fn make_mut(this: &mut Self) -> &mut T { |
| 2313 | let size_of_val = size_of_val::<T>(&**this); |
| 2314 | |
| 2315 | // Note that we hold both a strong reference and a weak reference. |
| 2316 | // Thus, releasing our strong reference only will not, by itself, cause |
| 2317 | // the memory to be deallocated. |
| 2318 | // |
| 2319 | // Use Acquire to ensure that we see any writes to `weak` that happen |
| 2320 | // before release writes (i.e., decrements) to `strong`. Since we hold a |
| 2321 | // weak count, there's no chance the ArcInner itself could be |
| 2322 | // deallocated. |
| 2323 | if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() { |
| 2324 | // Another strong pointer exists, so we must clone. |
| 2325 | |
| 2326 | let this_data_ref: &T = &**this; |
| 2327 | // `in_progress` drops the allocation if we panic before finishing initializing it. |
| 2328 | let mut in_progress: UniqueArcUninit<T, A> = |
| 2329 | UniqueArcUninit::new(this_data_ref, this.alloc.clone()); |
| 2330 | |
| 2331 | let initialized_clone = unsafe { |
| 2332 | // Clone. If the clone panics, `in_progress` will be dropped and clean up. |
| 2333 | this_data_ref.clone_to_uninit(in_progress.data_ptr().cast()); |
| 2334 | // Cast type of pointer, now that it is initialized. |
| 2335 | in_progress.into_arc() |
| 2336 | }; |
| 2337 | *this = initialized_clone; |
| 2338 | } else if this.inner().weak.load(Relaxed) != 1 { |
| 2339 | // Relaxed suffices in the above because this is fundamentally an |
| 2340 | // optimization: we are always racing with weak pointers being |
| 2341 | // dropped. Worst case, we end up allocated a new Arc unnecessarily. |
| 2342 | |
| 2343 | // We removed the last strong ref, but there are additional weak |
| 2344 | // refs remaining. We'll move the contents to a new Arc, and |
| 2345 | // invalidate the other weak refs. |
| 2346 | |
| 2347 | // Note that it is not possible for the read of `weak` to yield |
| 2348 | // usize::MAX (i.e., locked), since the weak count can only be |
| 2349 | // locked by a thread with a strong reference. |
| 2350 | |
| 2351 | // Materialize our own implicit weak pointer, so that it can clean |
| 2352 | // up the ArcInner as needed. |
| 2353 | let _weak = Weak { ptr: this.ptr, alloc: this.alloc.clone() }; |
| 2354 | |
| 2355 | // Can just steal the data, all that's left is Weaks |
| 2356 | // |
| 2357 | // We don't need panic-protection like the above branch does, but we might as well |
| 2358 | // use the same mechanism. |
| 2359 | let mut in_progress: UniqueArcUninit<T, A> = |
| 2360 | UniqueArcUninit::new(&**this, this.alloc.clone()); |
| 2361 | unsafe { |
| 2362 | // Initialize `in_progress` with move of **this. |
| 2363 | // We have to express this in terms of bytes because `T: ?Sized`; there is no |
| 2364 | // operation that just copies a value based on its `size_of_val()`. |
| 2365 | ptr::copy_nonoverlapping( |
| 2366 | ptr::from_ref(&**this).cast::<u8>(), |
| 2367 | in_progress.data_ptr().cast::<u8>(), |
| 2368 | size_of_val, |
| 2369 | ); |
| 2370 | |
| 2371 | ptr::write(this, in_progress.into_arc()); |
| 2372 | } |
| 2373 | } else { |
| 2374 | // We were the sole reference of either kind; bump back up the |
| 2375 | // strong ref count. |
| 2376 | this.inner().strong.store(1, Release); |
| 2377 | } |
| 2378 | |
| 2379 | // As with `get_mut()`, the unsafety is ok because our reference was |
| 2380 | // either unique to begin with, or became one upon cloning the contents. |
| 2381 | unsafe { Self::get_mut_unchecked(this) } |
| 2382 | } |
| 2383 | } |
| 2384 | |
| 2385 | impl<T: Clone, A: Allocator> Arc<T, A> { |
| 2386 | /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the |
| 2387 | /// clone. |
| 2388 | /// |
| 2389 | /// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to |
| 2390 | /// `(*arc_t).clone()`, but will avoid cloning the inner value where possible. |
| 2391 | /// |
| 2392 | /// # Examples |
| 2393 | /// |
| 2394 | /// ``` |
| 2395 | /// # use std::{ptr, sync::Arc}; |
| 2396 | /// let inner = String::from("test" ); |
| 2397 | /// let ptr = inner.as_ptr(); |
| 2398 | /// |
| 2399 | /// let arc = Arc::new(inner); |
| 2400 | /// let inner = Arc::unwrap_or_clone(arc); |
| 2401 | /// // The inner value was not cloned |
| 2402 | /// assert!(ptr::eq(ptr, inner.as_ptr())); |
| 2403 | /// |
| 2404 | /// let arc = Arc::new(inner); |
| 2405 | /// let arc2 = arc.clone(); |
| 2406 | /// let inner = Arc::unwrap_or_clone(arc); |
| 2407 | /// // Because there were 2 references, we had to clone the inner value. |
| 2408 | /// assert!(!ptr::eq(ptr, inner.as_ptr())); |
| 2409 | /// // `arc2` is the last reference, so when we unwrap it we get back |
| 2410 | /// // the original `String`. |
| 2411 | /// let inner = Arc::unwrap_or_clone(arc2); |
| 2412 | /// assert!(ptr::eq(ptr, inner.as_ptr())); |
| 2413 | /// ``` |
| 2414 | #[inline ] |
| 2415 | #[stable (feature = "arc_unwrap_or_clone" , since = "1.76.0" )] |
| 2416 | pub fn unwrap_or_clone(this: Self) -> T { |
| 2417 | Arc::try_unwrap(this).unwrap_or_else(|arc| (*arc).clone()) |
| 2418 | } |
| 2419 | } |
| 2420 | |
| 2421 | impl<T: ?Sized, A: Allocator> Arc<T, A> { |
| 2422 | /// Returns a mutable reference into the given `Arc`, if there are |
| 2423 | /// no other `Arc` or [`Weak`] pointers to the same allocation. |
| 2424 | /// |
| 2425 | /// Returns [`None`] otherwise, because it is not safe to |
| 2426 | /// mutate a shared value. |
| 2427 | /// |
| 2428 | /// See also [`make_mut`][make_mut], which will [`clone`][clone] |
| 2429 | /// the inner value when there are other `Arc` pointers. |
| 2430 | /// |
| 2431 | /// [make_mut]: Arc::make_mut |
| 2432 | /// [clone]: Clone::clone |
| 2433 | /// |
| 2434 | /// # Examples |
| 2435 | /// |
| 2436 | /// ``` |
| 2437 | /// use std::sync::Arc; |
| 2438 | /// |
| 2439 | /// let mut x = Arc::new(3); |
| 2440 | /// *Arc::get_mut(&mut x).unwrap() = 4; |
| 2441 | /// assert_eq!(*x, 4); |
| 2442 | /// |
| 2443 | /// let _y = Arc::clone(&x); |
| 2444 | /// assert!(Arc::get_mut(&mut x).is_none()); |
| 2445 | /// ``` |
| 2446 | #[inline ] |
| 2447 | #[stable (feature = "arc_unique" , since = "1.4.0" )] |
| 2448 | pub fn get_mut(this: &mut Self) -> Option<&mut T> { |
| 2449 | if Self::is_unique(this) { |
| 2450 | // This unsafety is ok because we're guaranteed that the pointer |
| 2451 | // returned is the *only* pointer that will ever be returned to T. Our |
| 2452 | // reference count is guaranteed to be 1 at this point, and we required |
| 2453 | // the Arc itself to be `mut`, so we're returning the only possible |
| 2454 | // reference to the inner data. |
| 2455 | unsafe { Some(Arc::get_mut_unchecked(this)) } |
| 2456 | } else { |
| 2457 | None |
| 2458 | } |
| 2459 | } |
| 2460 | |
| 2461 | /// Returns a mutable reference into the given `Arc`, |
| 2462 | /// without any check. |
| 2463 | /// |
| 2464 | /// See also [`get_mut`], which is safe and does appropriate checks. |
| 2465 | /// |
| 2466 | /// [`get_mut`]: Arc::get_mut |
| 2467 | /// |
| 2468 | /// # Safety |
| 2469 | /// |
| 2470 | /// If any other `Arc` or [`Weak`] pointers to the same allocation exist, then |
| 2471 | /// they must not be dereferenced or have active borrows for the duration |
| 2472 | /// of the returned borrow, and their inner type must be exactly the same as the |
| 2473 | /// inner type of this Rc (including lifetimes). This is trivially the case if no |
| 2474 | /// such pointers exist, for example immediately after `Arc::new`. |
| 2475 | /// |
| 2476 | /// # Examples |
| 2477 | /// |
| 2478 | /// ``` |
| 2479 | /// #![feature(get_mut_unchecked)] |
| 2480 | /// |
| 2481 | /// use std::sync::Arc; |
| 2482 | /// |
| 2483 | /// let mut x = Arc::new(String::new()); |
| 2484 | /// unsafe { |
| 2485 | /// Arc::get_mut_unchecked(&mut x).push_str("foo" ) |
| 2486 | /// } |
| 2487 | /// assert_eq!(*x, "foo" ); |
| 2488 | /// ``` |
| 2489 | /// Other `Arc` pointers to the same allocation must be to the same type. |
| 2490 | /// ```no_run |
| 2491 | /// #![feature(get_mut_unchecked)] |
| 2492 | /// |
| 2493 | /// use std::sync::Arc; |
| 2494 | /// |
| 2495 | /// let x: Arc<str> = Arc::from("Hello, world!" ); |
| 2496 | /// let mut y: Arc<[u8]> = x.clone().into(); |
| 2497 | /// unsafe { |
| 2498 | /// // this is Undefined Behavior, because x's inner type is str, not [u8] |
| 2499 | /// Arc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8 |
| 2500 | /// } |
| 2501 | /// println!("{}" , &*x); // Invalid UTF-8 in a str |
| 2502 | /// ``` |
| 2503 | /// Other `Arc` pointers to the same allocation must be to the exact same type, including lifetimes. |
| 2504 | /// ```no_run |
| 2505 | /// #![feature(get_mut_unchecked)] |
| 2506 | /// |
| 2507 | /// use std::sync::Arc; |
| 2508 | /// |
| 2509 | /// let x: Arc<&str> = Arc::new("Hello, world!" ); |
| 2510 | /// { |
| 2511 | /// let s = String::from("Oh, no!" ); |
| 2512 | /// let mut y: Arc<&str> = x.clone(); |
| 2513 | /// unsafe { |
| 2514 | /// // this is Undefined Behavior, because x's inner type |
| 2515 | /// // is &'long str, not &'short str |
| 2516 | /// *Arc::get_mut_unchecked(&mut y) = &s; |
| 2517 | /// } |
| 2518 | /// } |
| 2519 | /// println!("{}" , &*x); // Use-after-free |
| 2520 | /// ``` |
| 2521 | #[inline ] |
| 2522 | #[unstable (feature = "get_mut_unchecked" , issue = "63292" )] |
| 2523 | pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T { |
| 2524 | // We are careful to *not* create a reference covering the "count" fields, as |
| 2525 | // this would alias with concurrent access to the reference counts (e.g. by `Weak`). |
| 2526 | unsafe { &mut (*this.ptr.as_ptr()).data } |
| 2527 | } |
| 2528 | |
| 2529 | /// Determine whether this is the unique reference to the underlying data. |
| 2530 | /// |
| 2531 | /// Returns `true` if there are no other `Arc` or [`Weak`] pointers to the same allocation; |
| 2532 | /// returns `false` otherwise. |
| 2533 | /// |
| 2534 | /// If this function returns `true`, then is guaranteed to be safe to call [`get_mut_unchecked`] |
| 2535 | /// on this `Arc`, so long as no clones occur in between. |
| 2536 | /// |
| 2537 | /// # Examples |
| 2538 | /// |
| 2539 | /// ``` |
| 2540 | /// #![feature(arc_is_unique)] |
| 2541 | /// |
| 2542 | /// use std::sync::Arc; |
| 2543 | /// |
| 2544 | /// let x = Arc::new(3); |
| 2545 | /// assert!(Arc::is_unique(&x)); |
| 2546 | /// |
| 2547 | /// let y = Arc::clone(&x); |
| 2548 | /// assert!(!Arc::is_unique(&x)); |
| 2549 | /// drop(y); |
| 2550 | /// |
| 2551 | /// // Weak references also count, because they could be upgraded at any time. |
| 2552 | /// let z = Arc::downgrade(&x); |
| 2553 | /// assert!(!Arc::is_unique(&x)); |
| 2554 | /// ``` |
| 2555 | /// |
| 2556 | /// # Pointer invalidation |
| 2557 | /// |
| 2558 | /// This function will always return the same value as `Arc::get_mut(arc).is_some()`. However, |
| 2559 | /// unlike that operation it does not produce any mutable references to the underlying data, |
| 2560 | /// meaning no pointers to the data inside the `Arc` are invalidated by the call. Thus, the |
| 2561 | /// following code is valid, even though it would be UB if it used `Arc::get_mut`: |
| 2562 | /// |
| 2563 | /// ``` |
| 2564 | /// #![feature(arc_is_unique)] |
| 2565 | /// |
| 2566 | /// use std::sync::Arc; |
| 2567 | /// |
| 2568 | /// let arc = Arc::new(5); |
| 2569 | /// let pointer: *const i32 = &*arc; |
| 2570 | /// assert!(Arc::is_unique(&arc)); |
| 2571 | /// assert_eq!(unsafe { *pointer }, 5); |
| 2572 | /// ``` |
| 2573 | /// |
| 2574 | /// # Atomic orderings |
| 2575 | /// |
| 2576 | /// Concurrent drops to other `Arc` pointers to the same allocation will synchronize with this |
| 2577 | /// call - that is, this call performs an `Acquire` operation on the underlying strong and weak |
| 2578 | /// ref counts. This ensures that calling `get_mut_unchecked` is safe. |
| 2579 | /// |
| 2580 | /// Note that this operation requires locking the weak ref count, so concurrent calls to |
| 2581 | /// `downgrade` may spin-loop for a short period of time. |
| 2582 | /// |
| 2583 | /// [`get_mut_unchecked`]: Self::get_mut_unchecked |
| 2584 | #[inline ] |
| 2585 | #[unstable (feature = "arc_is_unique" , issue = "138938" )] |
| 2586 | pub fn is_unique(this: &Self) -> bool { |
| 2587 | // lock the weak pointer count if we appear to be the sole weak pointer |
| 2588 | // holder. |
| 2589 | // |
| 2590 | // The acquire label here ensures a happens-before relationship with any |
| 2591 | // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements |
| 2592 | // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded |
| 2593 | // weak ref was never dropped, the CAS here will fail so we do not care to synchronize. |
| 2594 | if this.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() { |
| 2595 | // This needs to be an `Acquire` to synchronize with the decrement of the `strong` |
| 2596 | // counter in `drop` -- the only access that happens when any but the last reference |
| 2597 | // is being dropped. |
| 2598 | let unique = this.inner().strong.load(Acquire) == 1; |
| 2599 | |
| 2600 | // The release write here synchronizes with a read in `downgrade`, |
| 2601 | // effectively preventing the above read of `strong` from happening |
| 2602 | // after the write. |
| 2603 | this.inner().weak.store(1, Release); // release the lock |
| 2604 | unique |
| 2605 | } else { |
| 2606 | false |
| 2607 | } |
| 2608 | } |
| 2609 | } |
| 2610 | |
| 2611 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2612 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for Arc<T, A> { |
| 2613 | /// Drops the `Arc`. |
| 2614 | /// |
| 2615 | /// This will decrement the strong reference count. If the strong reference |
| 2616 | /// count reaches zero then the only other references (if any) are |
| 2617 | /// [`Weak`], so we `drop` the inner value. |
| 2618 | /// |
| 2619 | /// # Examples |
| 2620 | /// |
| 2621 | /// ``` |
| 2622 | /// use std::sync::Arc; |
| 2623 | /// |
| 2624 | /// struct Foo; |
| 2625 | /// |
| 2626 | /// impl Drop for Foo { |
| 2627 | /// fn drop(&mut self) { |
| 2628 | /// println!("dropped!" ); |
| 2629 | /// } |
| 2630 | /// } |
| 2631 | /// |
| 2632 | /// let foo = Arc::new(Foo); |
| 2633 | /// let foo2 = Arc::clone(&foo); |
| 2634 | /// |
| 2635 | /// drop(foo); // Doesn't print anything |
| 2636 | /// drop(foo2); // Prints "dropped!" |
| 2637 | /// ``` |
| 2638 | #[inline ] |
| 2639 | fn drop(&mut self) { |
| 2640 | // Because `fetch_sub` is already atomic, we do not need to synchronize |
| 2641 | // with other threads unless we are going to delete the object. This |
| 2642 | // same logic applies to the below `fetch_sub` to the `weak` count. |
| 2643 | if self.inner().strong.fetch_sub(1, Release) != 1 { |
| 2644 | return; |
| 2645 | } |
| 2646 | |
| 2647 | // This fence is needed to prevent reordering of use of the data and |
| 2648 | // deletion of the data. Because it is marked `Release`, the decreasing |
| 2649 | // of the reference count synchronizes with this `Acquire` fence. This |
| 2650 | // means that use of the data happens before decreasing the reference |
| 2651 | // count, which happens before this fence, which happens before the |
| 2652 | // deletion of the data. |
| 2653 | // |
| 2654 | // As explained in the [Boost documentation][1], |
| 2655 | // |
| 2656 | // > It is important to enforce any possible access to the object in one |
| 2657 | // > thread (through an existing reference) to *happen before* deleting |
| 2658 | // > the object in a different thread. This is achieved by a "release" |
| 2659 | // > operation after dropping a reference (any access to the object |
| 2660 | // > through this reference must obviously happened before), and an |
| 2661 | // > "acquire" operation before deleting the object. |
| 2662 | // |
| 2663 | // In particular, while the contents of an Arc are usually immutable, it's |
| 2664 | // possible to have interior writes to something like a Mutex<T>. Since a |
| 2665 | // Mutex is not acquired when it is deleted, we can't rely on its |
| 2666 | // synchronization logic to make writes in thread A visible to a destructor |
| 2667 | // running in thread B. |
| 2668 | // |
| 2669 | // Also note that the Acquire fence here could probably be replaced with an |
| 2670 | // Acquire load, which could improve performance in highly-contended |
| 2671 | // situations. See [2]. |
| 2672 | // |
| 2673 | // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) |
| 2674 | // [2]: (https://github.com/rust-lang/rust/pull/41714) |
| 2675 | acquire!(self.inner().strong); |
| 2676 | |
| 2677 | // Make sure we aren't trying to "drop" the shared static for empty slices |
| 2678 | // used by Default::default. |
| 2679 | debug_assert!( |
| 2680 | !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner), |
| 2681 | "Arcs backed by a static should never reach a strong count of 0. \ |
| 2682 | Likely decrement_strong_count or from_raw were called too many times." , |
| 2683 | ); |
| 2684 | |
| 2685 | unsafe { |
| 2686 | self.drop_slow(); |
| 2687 | } |
| 2688 | } |
| 2689 | } |
| 2690 | |
| 2691 | impl<A: Allocator> Arc<dyn Any + Send + Sync, A> { |
| 2692 | /// Attempts to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type. |
| 2693 | /// |
| 2694 | /// # Examples |
| 2695 | /// |
| 2696 | /// ``` |
| 2697 | /// use std::any::Any; |
| 2698 | /// use std::sync::Arc; |
| 2699 | /// |
| 2700 | /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) { |
| 2701 | /// if let Ok(string) = value.downcast::<String>() { |
| 2702 | /// println!("String ({}): {}" , string.len(), string); |
| 2703 | /// } |
| 2704 | /// } |
| 2705 | /// |
| 2706 | /// let my_string = "Hello World" .to_string(); |
| 2707 | /// print_if_string(Arc::new(my_string)); |
| 2708 | /// print_if_string(Arc::new(0i8)); |
| 2709 | /// ``` |
| 2710 | #[inline ] |
| 2711 | #[stable (feature = "rc_downcast" , since = "1.29.0" )] |
| 2712 | pub fn downcast<T>(self) -> Result<Arc<T, A>, Self> |
| 2713 | where |
| 2714 | T: Any + Send + Sync, |
| 2715 | { |
| 2716 | if (*self).is::<T>() { |
| 2717 | unsafe { |
| 2718 | let (ptr, alloc) = Arc::into_inner_with_allocator(self); |
| 2719 | Ok(Arc::from_inner_in(ptr.cast(), alloc)) |
| 2720 | } |
| 2721 | } else { |
| 2722 | Err(self) |
| 2723 | } |
| 2724 | } |
| 2725 | |
| 2726 | /// Downcasts the `Arc<dyn Any + Send + Sync>` to a concrete type. |
| 2727 | /// |
| 2728 | /// For a safe alternative see [`downcast`]. |
| 2729 | /// |
| 2730 | /// # Examples |
| 2731 | /// |
| 2732 | /// ``` |
| 2733 | /// #![feature(downcast_unchecked)] |
| 2734 | /// |
| 2735 | /// use std::any::Any; |
| 2736 | /// use std::sync::Arc; |
| 2737 | /// |
| 2738 | /// let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize); |
| 2739 | /// |
| 2740 | /// unsafe { |
| 2741 | /// assert_eq!(*x.downcast_unchecked::<usize>(), 1); |
| 2742 | /// } |
| 2743 | /// ``` |
| 2744 | /// |
| 2745 | /// # Safety |
| 2746 | /// |
| 2747 | /// The contained value must be of type `T`. Calling this method |
| 2748 | /// with the incorrect type is *undefined behavior*. |
| 2749 | /// |
| 2750 | /// |
| 2751 | /// [`downcast`]: Self::downcast |
| 2752 | #[inline ] |
| 2753 | #[unstable (feature = "downcast_unchecked" , issue = "90850" )] |
| 2754 | pub unsafe fn downcast_unchecked<T>(self) -> Arc<T, A> |
| 2755 | where |
| 2756 | T: Any + Send + Sync, |
| 2757 | { |
| 2758 | unsafe { |
| 2759 | let (ptr, alloc) = Arc::into_inner_with_allocator(self); |
| 2760 | Arc::from_inner_in(ptr.cast(), alloc) |
| 2761 | } |
| 2762 | } |
| 2763 | } |
| 2764 | |
| 2765 | impl<T> Weak<T> { |
| 2766 | /// Constructs a new `Weak<T>`, without allocating any memory. |
| 2767 | /// Calling [`upgrade`] on the return value always gives [`None`]. |
| 2768 | /// |
| 2769 | /// [`upgrade`]: Weak::upgrade |
| 2770 | /// |
| 2771 | /// # Examples |
| 2772 | /// |
| 2773 | /// ``` |
| 2774 | /// use std::sync::Weak; |
| 2775 | /// |
| 2776 | /// let empty: Weak<i64> = Weak::new(); |
| 2777 | /// assert!(empty.upgrade().is_none()); |
| 2778 | /// ``` |
| 2779 | #[inline ] |
| 2780 | #[stable (feature = "downgraded_weak" , since = "1.10.0" )] |
| 2781 | #[rustc_const_stable (feature = "const_weak_new" , since = "1.73.0" )] |
| 2782 | #[must_use ] |
| 2783 | pub const fn new() -> Weak<T> { |
| 2784 | Weak { ptr: NonNull::without_provenance(addr:NonZeroUsize::MAX), alloc: Global } |
| 2785 | } |
| 2786 | } |
| 2787 | |
| 2788 | impl<T, A: Allocator> Weak<T, A> { |
| 2789 | /// Constructs a new `Weak<T, A>`, without allocating any memory, technically in the provided |
| 2790 | /// allocator. |
| 2791 | /// Calling [`upgrade`] on the return value always gives [`None`]. |
| 2792 | /// |
| 2793 | /// [`upgrade`]: Weak::upgrade |
| 2794 | /// |
| 2795 | /// # Examples |
| 2796 | /// |
| 2797 | /// ``` |
| 2798 | /// #![feature(allocator_api)] |
| 2799 | /// |
| 2800 | /// use std::sync::Weak; |
| 2801 | /// use std::alloc::System; |
| 2802 | /// |
| 2803 | /// let empty: Weak<i64, _> = Weak::new_in(System); |
| 2804 | /// assert!(empty.upgrade().is_none()); |
| 2805 | /// ``` |
| 2806 | #[inline ] |
| 2807 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 2808 | pub fn new_in(alloc: A) -> Weak<T, A> { |
| 2809 | Weak { ptr: NonNull::without_provenance(addr:NonZeroUsize::MAX), alloc } |
| 2810 | } |
| 2811 | } |
| 2812 | |
| 2813 | /// Helper type to allow accessing the reference counts without |
| 2814 | /// making any assertions about the data field. |
| 2815 | struct WeakInner<'a> { |
| 2816 | weak: &'a Atomic<usize>, |
| 2817 | strong: &'a Atomic<usize>, |
| 2818 | } |
| 2819 | |
| 2820 | impl<T: ?Sized> Weak<T> { |
| 2821 | /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`. |
| 2822 | /// |
| 2823 | /// This can be used to safely get a strong reference (by calling [`upgrade`] |
| 2824 | /// later) or to deallocate the weak count by dropping the `Weak<T>`. |
| 2825 | /// |
| 2826 | /// It takes ownership of one weak reference (with the exception of pointers created by [`new`], |
| 2827 | /// as these don't own anything; the method still works on them). |
| 2828 | /// |
| 2829 | /// # Safety |
| 2830 | /// |
| 2831 | /// The pointer must have originated from the [`into_raw`] and must still own its potential |
| 2832 | /// weak reference, and must point to a block of memory allocated by global allocator. |
| 2833 | /// |
| 2834 | /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this |
| 2835 | /// takes ownership of one weak reference currently represented as a raw pointer (the weak |
| 2836 | /// count is not modified by this operation) and therefore it must be paired with a previous |
| 2837 | /// call to [`into_raw`]. |
| 2838 | /// # Examples |
| 2839 | /// |
| 2840 | /// ``` |
| 2841 | /// use std::sync::{Arc, Weak}; |
| 2842 | /// |
| 2843 | /// let strong = Arc::new("hello" .to_owned()); |
| 2844 | /// |
| 2845 | /// let raw_1 = Arc::downgrade(&strong).into_raw(); |
| 2846 | /// let raw_2 = Arc::downgrade(&strong).into_raw(); |
| 2847 | /// |
| 2848 | /// assert_eq!(2, Arc::weak_count(&strong)); |
| 2849 | /// |
| 2850 | /// assert_eq!("hello" , &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap()); |
| 2851 | /// assert_eq!(1, Arc::weak_count(&strong)); |
| 2852 | /// |
| 2853 | /// drop(strong); |
| 2854 | /// |
| 2855 | /// // Decrement the last weak count. |
| 2856 | /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none()); |
| 2857 | /// ``` |
| 2858 | /// |
| 2859 | /// [`new`]: Weak::new |
| 2860 | /// [`into_raw`]: Weak::into_raw |
| 2861 | /// [`upgrade`]: Weak::upgrade |
| 2862 | #[inline ] |
| 2863 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
| 2864 | pub unsafe fn from_raw(ptr: *const T) -> Self { |
| 2865 | unsafe { Weak::from_raw_in(ptr, Global) } |
| 2866 | } |
| 2867 | } |
| 2868 | |
| 2869 | impl<T: ?Sized, A: Allocator> Weak<T, A> { |
| 2870 | /// Returns a reference to the underlying allocator. |
| 2871 | #[inline ] |
| 2872 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 2873 | pub fn allocator(&self) -> &A { |
| 2874 | &self.alloc |
| 2875 | } |
| 2876 | |
| 2877 | /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`. |
| 2878 | /// |
| 2879 | /// The pointer is valid only if there are some strong references. The pointer may be dangling, |
| 2880 | /// unaligned or even [`null`] otherwise. |
| 2881 | /// |
| 2882 | /// # Examples |
| 2883 | /// |
| 2884 | /// ``` |
| 2885 | /// use std::sync::Arc; |
| 2886 | /// use std::ptr; |
| 2887 | /// |
| 2888 | /// let strong = Arc::new("hello" .to_owned()); |
| 2889 | /// let weak = Arc::downgrade(&strong); |
| 2890 | /// // Both point to the same object |
| 2891 | /// assert!(ptr::eq(&*strong, weak.as_ptr())); |
| 2892 | /// // The strong here keeps it alive, so we can still access the object. |
| 2893 | /// assert_eq!("hello" , unsafe { &*weak.as_ptr() }); |
| 2894 | /// |
| 2895 | /// drop(strong); |
| 2896 | /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to |
| 2897 | /// // undefined behavior. |
| 2898 | /// // assert_eq!("hello", unsafe { &*weak.as_ptr() }); |
| 2899 | /// ``` |
| 2900 | /// |
| 2901 | /// [`null`]: core::ptr::null "ptr::null" |
| 2902 | #[must_use ] |
| 2903 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
| 2904 | pub fn as_ptr(&self) -> *const T { |
| 2905 | let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr); |
| 2906 | |
| 2907 | if is_dangling(ptr) { |
| 2908 | // If the pointer is dangling, we return the sentinel directly. This cannot be |
| 2909 | // a valid payload address, as the payload is at least as aligned as ArcInner (usize). |
| 2910 | ptr as *const T |
| 2911 | } else { |
| 2912 | // SAFETY: if is_dangling returns false, then the pointer is dereferenceable. |
| 2913 | // The payload may be dropped at this point, and we have to maintain provenance, |
| 2914 | // so use raw pointer manipulation. |
| 2915 | unsafe { &raw mut (*ptr).data } |
| 2916 | } |
| 2917 | } |
| 2918 | |
| 2919 | /// Consumes the `Weak<T>` and turns it into a raw pointer. |
| 2920 | /// |
| 2921 | /// This converts the weak pointer into a raw pointer, while still preserving the ownership of |
| 2922 | /// one weak reference (the weak count is not modified by this operation). It can be turned |
| 2923 | /// back into the `Weak<T>` with [`from_raw`]. |
| 2924 | /// |
| 2925 | /// The same restrictions of accessing the target of the pointer as with |
| 2926 | /// [`as_ptr`] apply. |
| 2927 | /// |
| 2928 | /// # Examples |
| 2929 | /// |
| 2930 | /// ``` |
| 2931 | /// use std::sync::{Arc, Weak}; |
| 2932 | /// |
| 2933 | /// let strong = Arc::new("hello" .to_owned()); |
| 2934 | /// let weak = Arc::downgrade(&strong); |
| 2935 | /// let raw = weak.into_raw(); |
| 2936 | /// |
| 2937 | /// assert_eq!(1, Arc::weak_count(&strong)); |
| 2938 | /// assert_eq!("hello" , unsafe { &*raw }); |
| 2939 | /// |
| 2940 | /// drop(unsafe { Weak::from_raw(raw) }); |
| 2941 | /// assert_eq!(0, Arc::weak_count(&strong)); |
| 2942 | /// ``` |
| 2943 | /// |
| 2944 | /// [`from_raw`]: Weak::from_raw |
| 2945 | /// [`as_ptr`]: Weak::as_ptr |
| 2946 | #[must_use = "losing the pointer will leak memory" ] |
| 2947 | #[stable (feature = "weak_into_raw" , since = "1.45.0" )] |
| 2948 | pub fn into_raw(self) -> *const T { |
| 2949 | ManuallyDrop::new(self).as_ptr() |
| 2950 | } |
| 2951 | |
| 2952 | /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator. |
| 2953 | /// |
| 2954 | /// This converts the weak pointer into a raw pointer, while still preserving the ownership of |
| 2955 | /// one weak reference (the weak count is not modified by this operation). It can be turned |
| 2956 | /// back into the `Weak<T>` with [`from_raw_in`]. |
| 2957 | /// |
| 2958 | /// The same restrictions of accessing the target of the pointer as with |
| 2959 | /// [`as_ptr`] apply. |
| 2960 | /// |
| 2961 | /// # Examples |
| 2962 | /// |
| 2963 | /// ``` |
| 2964 | /// #![feature(allocator_api)] |
| 2965 | /// use std::sync::{Arc, Weak}; |
| 2966 | /// use std::alloc::System; |
| 2967 | /// |
| 2968 | /// let strong = Arc::new_in("hello" .to_owned(), System); |
| 2969 | /// let weak = Arc::downgrade(&strong); |
| 2970 | /// let (raw, alloc) = weak.into_raw_with_allocator(); |
| 2971 | /// |
| 2972 | /// assert_eq!(1, Arc::weak_count(&strong)); |
| 2973 | /// assert_eq!("hello" , unsafe { &*raw }); |
| 2974 | /// |
| 2975 | /// drop(unsafe { Weak::from_raw_in(raw, alloc) }); |
| 2976 | /// assert_eq!(0, Arc::weak_count(&strong)); |
| 2977 | /// ``` |
| 2978 | /// |
| 2979 | /// [`from_raw_in`]: Weak::from_raw_in |
| 2980 | /// [`as_ptr`]: Weak::as_ptr |
| 2981 | #[must_use = "losing the pointer will leak memory" ] |
| 2982 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 2983 | pub fn into_raw_with_allocator(self) -> (*const T, A) { |
| 2984 | let this = mem::ManuallyDrop::new(self); |
| 2985 | let result = this.as_ptr(); |
| 2986 | // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped |
| 2987 | let alloc = unsafe { ptr::read(&this.alloc) }; |
| 2988 | (result, alloc) |
| 2989 | } |
| 2990 | |
| 2991 | /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>` in the provided |
| 2992 | /// allocator. |
| 2993 | /// |
| 2994 | /// This can be used to safely get a strong reference (by calling [`upgrade`] |
| 2995 | /// later) or to deallocate the weak count by dropping the `Weak<T>`. |
| 2996 | /// |
| 2997 | /// It takes ownership of one weak reference (with the exception of pointers created by [`new`], |
| 2998 | /// as these don't own anything; the method still works on them). |
| 2999 | /// |
| 3000 | /// # Safety |
| 3001 | /// |
| 3002 | /// The pointer must have originated from the [`into_raw`] and must still own its potential |
| 3003 | /// weak reference, and must point to a block of memory allocated by `alloc`. |
| 3004 | /// |
| 3005 | /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this |
| 3006 | /// takes ownership of one weak reference currently represented as a raw pointer (the weak |
| 3007 | /// count is not modified by this operation) and therefore it must be paired with a previous |
| 3008 | /// call to [`into_raw`]. |
| 3009 | /// # Examples |
| 3010 | /// |
| 3011 | /// ``` |
| 3012 | /// use std::sync::{Arc, Weak}; |
| 3013 | /// |
| 3014 | /// let strong = Arc::new("hello" .to_owned()); |
| 3015 | /// |
| 3016 | /// let raw_1 = Arc::downgrade(&strong).into_raw(); |
| 3017 | /// let raw_2 = Arc::downgrade(&strong).into_raw(); |
| 3018 | /// |
| 3019 | /// assert_eq!(2, Arc::weak_count(&strong)); |
| 3020 | /// |
| 3021 | /// assert_eq!("hello" , &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap()); |
| 3022 | /// assert_eq!(1, Arc::weak_count(&strong)); |
| 3023 | /// |
| 3024 | /// drop(strong); |
| 3025 | /// |
| 3026 | /// // Decrement the last weak count. |
| 3027 | /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none()); |
| 3028 | /// ``` |
| 3029 | /// |
| 3030 | /// [`new`]: Weak::new |
| 3031 | /// [`into_raw`]: Weak::into_raw |
| 3032 | /// [`upgrade`]: Weak::upgrade |
| 3033 | #[inline ] |
| 3034 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 3035 | pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self { |
| 3036 | // See Weak::as_ptr for context on how the input pointer is derived. |
| 3037 | |
| 3038 | let ptr = if is_dangling(ptr) { |
| 3039 | // This is a dangling Weak. |
| 3040 | ptr as *mut ArcInner<T> |
| 3041 | } else { |
| 3042 | // Otherwise, we're guaranteed the pointer came from a nondangling Weak. |
| 3043 | // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T. |
| 3044 | let offset = unsafe { data_offset(ptr) }; |
| 3045 | // Thus, we reverse the offset to get the whole RcInner. |
| 3046 | // SAFETY: the pointer originated from a Weak, so this offset is safe. |
| 3047 | unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> } |
| 3048 | }; |
| 3049 | |
| 3050 | // SAFETY: we now have recovered the original Weak pointer, so can create the Weak. |
| 3051 | Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc } |
| 3052 | } |
| 3053 | } |
| 3054 | |
| 3055 | impl<T: ?Sized, A: Allocator> Weak<T, A> { |
| 3056 | /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying |
| 3057 | /// dropping of the inner value if successful. |
| 3058 | /// |
| 3059 | /// Returns [`None`] if the inner value has since been dropped. |
| 3060 | /// |
| 3061 | /// # Examples |
| 3062 | /// |
| 3063 | /// ``` |
| 3064 | /// use std::sync::Arc; |
| 3065 | /// |
| 3066 | /// let five = Arc::new(5); |
| 3067 | /// |
| 3068 | /// let weak_five = Arc::downgrade(&five); |
| 3069 | /// |
| 3070 | /// let strong_five: Option<Arc<_>> = weak_five.upgrade(); |
| 3071 | /// assert!(strong_five.is_some()); |
| 3072 | /// |
| 3073 | /// // Destroy all strong pointers. |
| 3074 | /// drop(strong_five); |
| 3075 | /// drop(five); |
| 3076 | /// |
| 3077 | /// assert!(weak_five.upgrade().is_none()); |
| 3078 | /// ``` |
| 3079 | #[must_use = "this returns a new `Arc`, \ |
| 3080 | without modifying the original weak pointer" ] |
| 3081 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
| 3082 | pub fn upgrade(&self) -> Option<Arc<T, A>> |
| 3083 | where |
| 3084 | A: Clone, |
| 3085 | { |
| 3086 | #[inline ] |
| 3087 | fn checked_increment(n: usize) -> Option<usize> { |
| 3088 | // Any write of 0 we can observe leaves the field in permanently zero state. |
| 3089 | if n == 0 { |
| 3090 | return None; |
| 3091 | } |
| 3092 | // See comments in `Arc::clone` for why we do this (for `mem::forget`). |
| 3093 | assert!(n <= MAX_REFCOUNT, "{}" , INTERNAL_OVERFLOW_ERROR); |
| 3094 | Some(n + 1) |
| 3095 | } |
| 3096 | |
| 3097 | // We use a CAS loop to increment the strong count instead of a |
| 3098 | // fetch_add as this function should never take the reference count |
| 3099 | // from zero to one. |
| 3100 | // |
| 3101 | // Relaxed is fine for the failure case because we don't have any expectations about the new state. |
| 3102 | // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner |
| 3103 | // value can be initialized after `Weak` references have already been created. In that case, we |
| 3104 | // expect to observe the fully initialized value. |
| 3105 | if self.inner()?.strong.fetch_update(Acquire, Relaxed, checked_increment).is_ok() { |
| 3106 | // SAFETY: pointer is not null, verified in checked_increment |
| 3107 | unsafe { Some(Arc::from_inner_in(self.ptr, self.alloc.clone())) } |
| 3108 | } else { |
| 3109 | None |
| 3110 | } |
| 3111 | } |
| 3112 | |
| 3113 | /// Gets the number of strong (`Arc`) pointers pointing to this allocation. |
| 3114 | /// |
| 3115 | /// If `self` was created using [`Weak::new`], this will return 0. |
| 3116 | #[must_use ] |
| 3117 | #[stable (feature = "weak_counts" , since = "1.41.0" )] |
| 3118 | pub fn strong_count(&self) -> usize { |
| 3119 | if let Some(inner) = self.inner() { inner.strong.load(Relaxed) } else { 0 } |
| 3120 | } |
| 3121 | |
| 3122 | /// Gets an approximation of the number of `Weak` pointers pointing to this |
| 3123 | /// allocation. |
| 3124 | /// |
| 3125 | /// If `self` was created using [`Weak::new`], or if there are no remaining |
| 3126 | /// strong pointers, this will return 0. |
| 3127 | /// |
| 3128 | /// # Accuracy |
| 3129 | /// |
| 3130 | /// Due to implementation details, the returned value can be off by 1 in |
| 3131 | /// either direction when other threads are manipulating any `Arc`s or |
| 3132 | /// `Weak`s pointing to the same allocation. |
| 3133 | #[must_use ] |
| 3134 | #[stable (feature = "weak_counts" , since = "1.41.0" )] |
| 3135 | pub fn weak_count(&self) -> usize { |
| 3136 | if let Some(inner) = self.inner() { |
| 3137 | let weak = inner.weak.load(Acquire); |
| 3138 | let strong = inner.strong.load(Relaxed); |
| 3139 | if strong == 0 { |
| 3140 | 0 |
| 3141 | } else { |
| 3142 | // Since we observed that there was at least one strong pointer |
| 3143 | // after reading the weak count, we know that the implicit weak |
| 3144 | // reference (present whenever any strong references are alive) |
| 3145 | // was still around when we observed the weak count, and can |
| 3146 | // therefore safely subtract it. |
| 3147 | weak - 1 |
| 3148 | } |
| 3149 | } else { |
| 3150 | 0 |
| 3151 | } |
| 3152 | } |
| 3153 | |
| 3154 | /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`, |
| 3155 | /// (i.e., when this `Weak` was created by `Weak::new`). |
| 3156 | #[inline ] |
| 3157 | fn inner(&self) -> Option<WeakInner<'_>> { |
| 3158 | let ptr = self.ptr.as_ptr(); |
| 3159 | if is_dangling(ptr) { |
| 3160 | None |
| 3161 | } else { |
| 3162 | // We are careful to *not* create a reference covering the "data" field, as |
| 3163 | // the field may be mutated concurrently (for example, if the last `Arc` |
| 3164 | // is dropped, the data field will be dropped in-place). |
| 3165 | Some(unsafe { WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak } }) |
| 3166 | } |
| 3167 | } |
| 3168 | |
| 3169 | /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if |
| 3170 | /// both don't point to any allocation (because they were created with `Weak::new()`). However, |
| 3171 | /// this function ignores the metadata of `dyn Trait` pointers. |
| 3172 | /// |
| 3173 | /// # Notes |
| 3174 | /// |
| 3175 | /// Since this compares pointers it means that `Weak::new()` will equal each |
| 3176 | /// other, even though they don't point to any allocation. |
| 3177 | /// |
| 3178 | /// # Examples |
| 3179 | /// |
| 3180 | /// ``` |
| 3181 | /// use std::sync::Arc; |
| 3182 | /// |
| 3183 | /// let first_rc = Arc::new(5); |
| 3184 | /// let first = Arc::downgrade(&first_rc); |
| 3185 | /// let second = Arc::downgrade(&first_rc); |
| 3186 | /// |
| 3187 | /// assert!(first.ptr_eq(&second)); |
| 3188 | /// |
| 3189 | /// let third_rc = Arc::new(5); |
| 3190 | /// let third = Arc::downgrade(&third_rc); |
| 3191 | /// |
| 3192 | /// assert!(!first.ptr_eq(&third)); |
| 3193 | /// ``` |
| 3194 | /// |
| 3195 | /// Comparing `Weak::new`. |
| 3196 | /// |
| 3197 | /// ``` |
| 3198 | /// use std::sync::{Arc, Weak}; |
| 3199 | /// |
| 3200 | /// let first = Weak::new(); |
| 3201 | /// let second = Weak::new(); |
| 3202 | /// assert!(first.ptr_eq(&second)); |
| 3203 | /// |
| 3204 | /// let third_rc = Arc::new(()); |
| 3205 | /// let third = Arc::downgrade(&third_rc); |
| 3206 | /// assert!(!first.ptr_eq(&third)); |
| 3207 | /// ``` |
| 3208 | /// |
| 3209 | /// [`ptr::eq`]: core::ptr::eq "ptr::eq" |
| 3210 | #[inline ] |
| 3211 | #[must_use ] |
| 3212 | #[stable (feature = "weak_ptr_eq" , since = "1.39.0" )] |
| 3213 | pub fn ptr_eq(&self, other: &Self) -> bool { |
| 3214 | ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr()) |
| 3215 | } |
| 3216 | } |
| 3217 | |
| 3218 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
| 3219 | impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> { |
| 3220 | /// Makes a clone of the `Weak` pointer that points to the same allocation. |
| 3221 | /// |
| 3222 | /// # Examples |
| 3223 | /// |
| 3224 | /// ``` |
| 3225 | /// use std::sync::{Arc, Weak}; |
| 3226 | /// |
| 3227 | /// let weak_five = Arc::downgrade(&Arc::new(5)); |
| 3228 | /// |
| 3229 | /// let _ = Weak::clone(&weak_five); |
| 3230 | /// ``` |
| 3231 | #[inline ] |
| 3232 | fn clone(&self) -> Weak<T, A> { |
| 3233 | if let Some(inner) = self.inner() { |
| 3234 | // See comments in Arc::clone() for why this is relaxed. This can use a |
| 3235 | // fetch_add (ignoring the lock) because the weak count is only locked |
| 3236 | // where are *no other* weak pointers in existence. (So we can't be |
| 3237 | // running this code in that case). |
| 3238 | let old_size = inner.weak.fetch_add(1, Relaxed); |
| 3239 | |
| 3240 | // See comments in Arc::clone() for why we do this (for mem::forget). |
| 3241 | if old_size > MAX_REFCOUNT { |
| 3242 | abort(); |
| 3243 | } |
| 3244 | } |
| 3245 | |
| 3246 | Weak { ptr: self.ptr, alloc: self.alloc.clone() } |
| 3247 | } |
| 3248 | } |
| 3249 | |
| 3250 | #[unstable (feature = "ergonomic_clones" , issue = "132290" )] |
| 3251 | impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {} |
| 3252 | |
| 3253 | #[stable (feature = "downgraded_weak" , since = "1.10.0" )] |
| 3254 | impl<T> Default for Weak<T> { |
| 3255 | /// Constructs a new `Weak<T>`, without allocating memory. |
| 3256 | /// Calling [`upgrade`] on the return value always |
| 3257 | /// gives [`None`]. |
| 3258 | /// |
| 3259 | /// [`upgrade`]: Weak::upgrade |
| 3260 | /// |
| 3261 | /// # Examples |
| 3262 | /// |
| 3263 | /// ``` |
| 3264 | /// use std::sync::Weak; |
| 3265 | /// |
| 3266 | /// let empty: Weak<i64> = Default::default(); |
| 3267 | /// assert!(empty.upgrade().is_none()); |
| 3268 | /// ``` |
| 3269 | fn default() -> Weak<T> { |
| 3270 | Weak::new() |
| 3271 | } |
| 3272 | } |
| 3273 | |
| 3274 | #[stable (feature = "arc_weak" , since = "1.4.0" )] |
| 3275 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for Weak<T, A> { |
| 3276 | /// Drops the `Weak` pointer. |
| 3277 | /// |
| 3278 | /// # Examples |
| 3279 | /// |
| 3280 | /// ``` |
| 3281 | /// use std::sync::{Arc, Weak}; |
| 3282 | /// |
| 3283 | /// struct Foo; |
| 3284 | /// |
| 3285 | /// impl Drop for Foo { |
| 3286 | /// fn drop(&mut self) { |
| 3287 | /// println!("dropped!" ); |
| 3288 | /// } |
| 3289 | /// } |
| 3290 | /// |
| 3291 | /// let foo = Arc::new(Foo); |
| 3292 | /// let weak_foo = Arc::downgrade(&foo); |
| 3293 | /// let other_weak_foo = Weak::clone(&weak_foo); |
| 3294 | /// |
| 3295 | /// drop(weak_foo); // Doesn't print anything |
| 3296 | /// drop(foo); // Prints "dropped!" |
| 3297 | /// |
| 3298 | /// assert!(other_weak_foo.upgrade().is_none()); |
| 3299 | /// ``` |
| 3300 | fn drop(&mut self) { |
| 3301 | // If we find out that we were the last weak pointer, then its time to |
| 3302 | // deallocate the data entirely. See the discussion in Arc::drop() about |
| 3303 | // the memory orderings |
| 3304 | // |
| 3305 | // It's not necessary to check for the locked state here, because the |
| 3306 | // weak count can only be locked if there was precisely one weak ref, |
| 3307 | // meaning that drop could only subsequently run ON that remaining weak |
| 3308 | // ref, which can only happen after the lock is released. |
| 3309 | let inner = if let Some(inner) = self.inner() { inner } else { return }; |
| 3310 | |
| 3311 | if inner.weak.fetch_sub(1, Release) == 1 { |
| 3312 | acquire!(inner.weak); |
| 3313 | |
| 3314 | // Make sure we aren't trying to "deallocate" the shared static for empty slices |
| 3315 | // used by Default::default. |
| 3316 | debug_assert!( |
| 3317 | !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner), |
| 3318 | "Arc/Weaks backed by a static should never be deallocated. \ |
| 3319 | Likely decrement_strong_count or from_raw were called too many times." , |
| 3320 | ); |
| 3321 | |
| 3322 | unsafe { |
| 3323 | self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr())) |
| 3324 | } |
| 3325 | } |
| 3326 | } |
| 3327 | } |
| 3328 | |
| 3329 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3330 | trait ArcEqIdent<T: ?Sized + PartialEq, A: Allocator> { |
| 3331 | fn eq(&self, other: &Arc<T, A>) -> bool; |
| 3332 | fn ne(&self, other: &Arc<T, A>) -> bool; |
| 3333 | } |
| 3334 | |
| 3335 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3336 | impl<T: ?Sized + PartialEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> { |
| 3337 | #[inline ] |
| 3338 | default fn eq(&self, other: &Arc<T, A>) -> bool { |
| 3339 | **self == **other |
| 3340 | } |
| 3341 | #[inline ] |
| 3342 | default fn ne(&self, other: &Arc<T, A>) -> bool { |
| 3343 | **self != **other |
| 3344 | } |
| 3345 | } |
| 3346 | |
| 3347 | /// We're doing this specialization here, and not as a more general optimization on `&T`, because it |
| 3348 | /// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to |
| 3349 | /// store large values, that are slow to clone, but also heavy to check for equality, causing this |
| 3350 | /// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to |
| 3351 | /// the same value, than two `&T`s. |
| 3352 | /// |
| 3353 | /// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive. |
| 3354 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3355 | impl<T: ?Sized + crate::rc::MarkerEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> { |
| 3356 | #[inline ] |
| 3357 | fn eq(&self, other: &Arc<T, A>) -> bool { |
| 3358 | Arc::ptr_eq(self, other) || **self == **other |
| 3359 | } |
| 3360 | |
| 3361 | #[inline ] |
| 3362 | fn ne(&self, other: &Arc<T, A>) -> bool { |
| 3363 | !Arc::ptr_eq(self, other) && **self != **other |
| 3364 | } |
| 3365 | } |
| 3366 | |
| 3367 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3368 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Arc<T, A> { |
| 3369 | /// Equality for two `Arc`s. |
| 3370 | /// |
| 3371 | /// Two `Arc`s are equal if their inner values are equal, even if they are |
| 3372 | /// stored in different allocation. |
| 3373 | /// |
| 3374 | /// If `T` also implements `Eq` (implying reflexivity of equality), |
| 3375 | /// two `Arc`s that point to the same allocation are always equal. |
| 3376 | /// |
| 3377 | /// # Examples |
| 3378 | /// |
| 3379 | /// ``` |
| 3380 | /// use std::sync::Arc; |
| 3381 | /// |
| 3382 | /// let five = Arc::new(5); |
| 3383 | /// |
| 3384 | /// assert!(five == Arc::new(5)); |
| 3385 | /// ``` |
| 3386 | #[inline ] |
| 3387 | fn eq(&self, other: &Arc<T, A>) -> bool { |
| 3388 | ArcEqIdent::eq(self, other) |
| 3389 | } |
| 3390 | |
| 3391 | /// Inequality for two `Arc`s. |
| 3392 | /// |
| 3393 | /// Two `Arc`s are not equal if their inner values are not equal. |
| 3394 | /// |
| 3395 | /// If `T` also implements `Eq` (implying reflexivity of equality), |
| 3396 | /// two `Arc`s that point to the same value are always equal. |
| 3397 | /// |
| 3398 | /// # Examples |
| 3399 | /// |
| 3400 | /// ``` |
| 3401 | /// use std::sync::Arc; |
| 3402 | /// |
| 3403 | /// let five = Arc::new(5); |
| 3404 | /// |
| 3405 | /// assert!(five != Arc::new(6)); |
| 3406 | /// ``` |
| 3407 | #[inline ] |
| 3408 | fn ne(&self, other: &Arc<T, A>) -> bool { |
| 3409 | ArcEqIdent::ne(self, other) |
| 3410 | } |
| 3411 | } |
| 3412 | |
| 3413 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3414 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Arc<T, A> { |
| 3415 | /// Partial comparison for two `Arc`s. |
| 3416 | /// |
| 3417 | /// The two are compared by calling `partial_cmp()` on their inner values. |
| 3418 | /// |
| 3419 | /// # Examples |
| 3420 | /// |
| 3421 | /// ``` |
| 3422 | /// use std::sync::Arc; |
| 3423 | /// use std::cmp::Ordering; |
| 3424 | /// |
| 3425 | /// let five = Arc::new(5); |
| 3426 | /// |
| 3427 | /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6))); |
| 3428 | /// ``` |
| 3429 | fn partial_cmp(&self, other: &Arc<T, A>) -> Option<Ordering> { |
| 3430 | (**self).partial_cmp(&**other) |
| 3431 | } |
| 3432 | |
| 3433 | /// Less-than comparison for two `Arc`s. |
| 3434 | /// |
| 3435 | /// The two are compared by calling `<` on their inner values. |
| 3436 | /// |
| 3437 | /// # Examples |
| 3438 | /// |
| 3439 | /// ``` |
| 3440 | /// use std::sync::Arc; |
| 3441 | /// |
| 3442 | /// let five = Arc::new(5); |
| 3443 | /// |
| 3444 | /// assert!(five < Arc::new(6)); |
| 3445 | /// ``` |
| 3446 | fn lt(&self, other: &Arc<T, A>) -> bool { |
| 3447 | *(*self) < *(*other) |
| 3448 | } |
| 3449 | |
| 3450 | /// 'Less than or equal to' comparison for two `Arc`s. |
| 3451 | /// |
| 3452 | /// The two are compared by calling `<=` on their inner values. |
| 3453 | /// |
| 3454 | /// # Examples |
| 3455 | /// |
| 3456 | /// ``` |
| 3457 | /// use std::sync::Arc; |
| 3458 | /// |
| 3459 | /// let five = Arc::new(5); |
| 3460 | /// |
| 3461 | /// assert!(five <= Arc::new(5)); |
| 3462 | /// ``` |
| 3463 | fn le(&self, other: &Arc<T, A>) -> bool { |
| 3464 | *(*self) <= *(*other) |
| 3465 | } |
| 3466 | |
| 3467 | /// Greater-than comparison for two `Arc`s. |
| 3468 | /// |
| 3469 | /// The two are compared by calling `>` on their inner values. |
| 3470 | /// |
| 3471 | /// # Examples |
| 3472 | /// |
| 3473 | /// ``` |
| 3474 | /// use std::sync::Arc; |
| 3475 | /// |
| 3476 | /// let five = Arc::new(5); |
| 3477 | /// |
| 3478 | /// assert!(five > Arc::new(4)); |
| 3479 | /// ``` |
| 3480 | fn gt(&self, other: &Arc<T, A>) -> bool { |
| 3481 | *(*self) > *(*other) |
| 3482 | } |
| 3483 | |
| 3484 | /// 'Greater than or equal to' comparison for two `Arc`s. |
| 3485 | /// |
| 3486 | /// The two are compared by calling `>=` on their inner values. |
| 3487 | /// |
| 3488 | /// # Examples |
| 3489 | /// |
| 3490 | /// ``` |
| 3491 | /// use std::sync::Arc; |
| 3492 | /// |
| 3493 | /// let five = Arc::new(5); |
| 3494 | /// |
| 3495 | /// assert!(five >= Arc::new(5)); |
| 3496 | /// ``` |
| 3497 | fn ge(&self, other: &Arc<T, A>) -> bool { |
| 3498 | *(*self) >= *(*other) |
| 3499 | } |
| 3500 | } |
| 3501 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3502 | impl<T: ?Sized + Ord, A: Allocator> Ord for Arc<T, A> { |
| 3503 | /// Comparison for two `Arc`s. |
| 3504 | /// |
| 3505 | /// The two are compared by calling `cmp()` on their inner values. |
| 3506 | /// |
| 3507 | /// # Examples |
| 3508 | /// |
| 3509 | /// ``` |
| 3510 | /// use std::sync::Arc; |
| 3511 | /// use std::cmp::Ordering; |
| 3512 | /// |
| 3513 | /// let five = Arc::new(5); |
| 3514 | /// |
| 3515 | /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6))); |
| 3516 | /// ``` |
| 3517 | fn cmp(&self, other: &Arc<T, A>) -> Ordering { |
| 3518 | (**self).cmp(&**other) |
| 3519 | } |
| 3520 | } |
| 3521 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3522 | impl<T: ?Sized + Eq, A: Allocator> Eq for Arc<T, A> {} |
| 3523 | |
| 3524 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3525 | impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Arc<T, A> { |
| 3526 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 3527 | fmt::Display::fmt(&**self, f) |
| 3528 | } |
| 3529 | } |
| 3530 | |
| 3531 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3532 | impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Arc<T, A> { |
| 3533 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 3534 | fmt::Debug::fmt(&**self, f) |
| 3535 | } |
| 3536 | } |
| 3537 | |
| 3538 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3539 | impl<T: ?Sized, A: Allocator> fmt::Pointer for Arc<T, A> { |
| 3540 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 3541 | fmt::Pointer::fmt(&(&raw const **self), f) |
| 3542 | } |
| 3543 | } |
| 3544 | |
| 3545 | #[cfg (not(no_global_oom_handling))] |
| 3546 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3547 | impl<T: Default> Default for Arc<T> { |
| 3548 | /// Creates a new `Arc<T>`, with the `Default` value for `T`. |
| 3549 | /// |
| 3550 | /// # Examples |
| 3551 | /// |
| 3552 | /// ``` |
| 3553 | /// use std::sync::Arc; |
| 3554 | /// |
| 3555 | /// let x: Arc<i32> = Default::default(); |
| 3556 | /// assert_eq!(*x, 0); |
| 3557 | /// ``` |
| 3558 | fn default() -> Arc<T> { |
| 3559 | unsafe { |
| 3560 | Self::from_inner( |
| 3561 | Box::leak(Box::write( |
| 3562 | Box::new_uninit(), |
| 3563 | ArcInner { |
| 3564 | strong: atomic::AtomicUsize::new(1), |
| 3565 | weak: atomic::AtomicUsize::new(1), |
| 3566 | data: T::default(), |
| 3567 | }, |
| 3568 | )) |
| 3569 | .into(), |
| 3570 | ) |
| 3571 | } |
| 3572 | } |
| 3573 | } |
| 3574 | |
| 3575 | /// Struct to hold the static `ArcInner` used for empty `Arc<str/CStr/[T]>` as |
| 3576 | /// returned by `Default::default`. |
| 3577 | /// |
| 3578 | /// Layout notes: |
| 3579 | /// * `repr(align(16))` so we can use it for `[T]` with `align_of::<T>() <= 16`. |
| 3580 | /// * `repr(C)` so `inner` is at offset 0 (and thus guaranteed to actually be aligned to 16). |
| 3581 | /// * `[u8; 1]` (to be initialized with 0) so it can be used for `Arc<CStr>`. |
| 3582 | #[repr (C, align(16))] |
| 3583 | struct SliceArcInnerForStatic { |
| 3584 | inner: ArcInner<[u8; 1]>, |
| 3585 | } |
| 3586 | #[cfg (not(no_global_oom_handling))] |
| 3587 | const MAX_STATIC_INNER_SLICE_ALIGNMENT: usize = 16; |
| 3588 | |
| 3589 | static STATIC_INNER_SLICE: SliceArcInnerForStatic = SliceArcInnerForStatic { |
| 3590 | inner: ArcInner { |
| 3591 | strong: atomic::AtomicUsize::new(1), |
| 3592 | weak: atomic::AtomicUsize::new(1), |
| 3593 | data: [0], |
| 3594 | }, |
| 3595 | }; |
| 3596 | |
| 3597 | #[cfg (not(no_global_oom_handling))] |
| 3598 | #[stable (feature = "more_rc_default_impls" , since = "1.80.0" )] |
| 3599 | impl Default for Arc<str> { |
| 3600 | /// Creates an empty str inside an Arc |
| 3601 | /// |
| 3602 | /// This may or may not share an allocation with other Arcs. |
| 3603 | #[inline ] |
| 3604 | fn default() -> Self { |
| 3605 | let arc: Arc<[u8]> = Default::default(); |
| 3606 | debug_assert!(core::str::from_utf8(&*arc).is_ok()); |
| 3607 | let (ptr: NonNull>, alloc: Global) = Arc::into_inner_with_allocator(this:arc); |
| 3608 | unsafe { Arc::from_ptr_in(ptr.as_ptr() as *mut ArcInner<str>, alloc) } |
| 3609 | } |
| 3610 | } |
| 3611 | |
| 3612 | #[cfg (not(no_global_oom_handling))] |
| 3613 | #[stable (feature = "more_rc_default_impls" , since = "1.80.0" )] |
| 3614 | impl Default for Arc<core::ffi::CStr> { |
| 3615 | /// Creates an empty CStr inside an Arc |
| 3616 | /// |
| 3617 | /// This may or may not share an allocation with other Arcs. |
| 3618 | #[inline ] |
| 3619 | fn default() -> Self { |
| 3620 | use core::ffi::CStr; |
| 3621 | let inner: NonNull<ArcInner<[u8]>> = NonNull::from(&STATIC_INNER_SLICE.inner); |
| 3622 | let inner: NonNull<ArcInner<CStr>> = |
| 3623 | NonNull::new(inner.as_ptr() as *mut ArcInner<CStr>).unwrap(); |
| 3624 | // `this` semantically is the Arc "owned" by the static, so make sure not to drop it. |
| 3625 | let this: mem::ManuallyDrop<Arc<CStr>> = |
| 3626 | unsafe { mem::ManuallyDrop::new(Arc::from_inner(ptr:inner)) }; |
| 3627 | (*this).clone() |
| 3628 | } |
| 3629 | } |
| 3630 | |
| 3631 | #[cfg (not(no_global_oom_handling))] |
| 3632 | #[stable (feature = "more_rc_default_impls" , since = "1.80.0" )] |
| 3633 | impl<T> Default for Arc<[T]> { |
| 3634 | /// Creates an empty `[T]` inside an Arc |
| 3635 | /// |
| 3636 | /// This may or may not share an allocation with other Arcs. |
| 3637 | #[inline ] |
| 3638 | fn default() -> Self { |
| 3639 | if align_of::<T>() <= MAX_STATIC_INNER_SLICE_ALIGNMENT { |
| 3640 | // We take a reference to the whole struct instead of the ArcInner<[u8; 1]> inside it so |
| 3641 | // we don't shrink the range of bytes the ptr is allowed to access under Stacked Borrows. |
| 3642 | // (Miri complains on 32-bit targets with Arc<[Align16]> otherwise.) |
| 3643 | // (Note that NonNull::from(&STATIC_INNER_SLICE.inner) is fine under Tree Borrows.) |
| 3644 | let inner: NonNull<SliceArcInnerForStatic> = NonNull::from(&STATIC_INNER_SLICE); |
| 3645 | let inner: NonNull<ArcInner<[T; 0]>> = inner.cast(); |
| 3646 | // `this` semantically is the Arc "owned" by the static, so make sure not to drop it. |
| 3647 | let this: mem::ManuallyDrop<Arc<[T; 0]>> = |
| 3648 | unsafe { mem::ManuallyDrop::new(Arc::from_inner(ptr:inner)) }; |
| 3649 | return (*this).clone(); |
| 3650 | } |
| 3651 | |
| 3652 | // If T's alignment is too large for the static, make a new unique allocation. |
| 3653 | let arr: [T; 0] = []; |
| 3654 | Arc::from(arr) |
| 3655 | } |
| 3656 | } |
| 3657 | |
| 3658 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3659 | impl<T: ?Sized + Hash, A: Allocator> Hash for Arc<T, A> { |
| 3660 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 3661 | (**self).hash(state) |
| 3662 | } |
| 3663 | } |
| 3664 | |
| 3665 | #[cfg (not(no_global_oom_handling))] |
| 3666 | #[stable (feature = "from_for_ptrs" , since = "1.6.0" )] |
| 3667 | impl<T> From<T> for Arc<T> { |
| 3668 | /// Converts a `T` into an `Arc<T>` |
| 3669 | /// |
| 3670 | /// The conversion moves the value into a |
| 3671 | /// newly allocated `Arc`. It is equivalent to |
| 3672 | /// calling `Arc::new(t)`. |
| 3673 | /// |
| 3674 | /// # Example |
| 3675 | /// ```rust |
| 3676 | /// # use std::sync::Arc; |
| 3677 | /// let x = 5; |
| 3678 | /// let arc = Arc::new(5); |
| 3679 | /// |
| 3680 | /// assert_eq!(Arc::from(x), arc); |
| 3681 | /// ``` |
| 3682 | fn from(t: T) -> Self { |
| 3683 | Arc::new(data:t) |
| 3684 | } |
| 3685 | } |
| 3686 | |
| 3687 | #[cfg (not(no_global_oom_handling))] |
| 3688 | #[stable (feature = "shared_from_array" , since = "1.74.0" )] |
| 3689 | impl<T, const N: usize> From<[T; N]> for Arc<[T]> { |
| 3690 | /// Converts a [`[T; N]`](prim@array) into an `Arc<[T]>`. |
| 3691 | /// |
| 3692 | /// The conversion moves the array into a newly allocated `Arc`. |
| 3693 | /// |
| 3694 | /// # Example |
| 3695 | /// |
| 3696 | /// ``` |
| 3697 | /// # use std::sync::Arc; |
| 3698 | /// let original: [i32; 3] = [1, 2, 3]; |
| 3699 | /// let shared: Arc<[i32]> = Arc::from(original); |
| 3700 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
| 3701 | /// ``` |
| 3702 | #[inline ] |
| 3703 | fn from(v: [T; N]) -> Arc<[T]> { |
| 3704 | Arc::<[T; N]>::from(v) |
| 3705 | } |
| 3706 | } |
| 3707 | |
| 3708 | #[cfg (not(no_global_oom_handling))] |
| 3709 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
| 3710 | impl<T: Clone> From<&[T]> for Arc<[T]> { |
| 3711 | /// Allocates a reference-counted slice and fills it by cloning `v`'s items. |
| 3712 | /// |
| 3713 | /// # Example |
| 3714 | /// |
| 3715 | /// ``` |
| 3716 | /// # use std::sync::Arc; |
| 3717 | /// let original: &[i32] = &[1, 2, 3]; |
| 3718 | /// let shared: Arc<[i32]> = Arc::from(original); |
| 3719 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
| 3720 | /// ``` |
| 3721 | #[inline ] |
| 3722 | fn from(v: &[T]) -> Arc<[T]> { |
| 3723 | <Self as ArcFromSlice<T>>::from_slice(v) |
| 3724 | } |
| 3725 | } |
| 3726 | |
| 3727 | #[cfg (not(no_global_oom_handling))] |
| 3728 | #[stable (feature = "shared_from_mut_slice" , since = "1.84.0" )] |
| 3729 | impl<T: Clone> From<&mut [T]> for Arc<[T]> { |
| 3730 | /// Allocates a reference-counted slice and fills it by cloning `v`'s items. |
| 3731 | /// |
| 3732 | /// # Example |
| 3733 | /// |
| 3734 | /// ``` |
| 3735 | /// # use std::sync::Arc; |
| 3736 | /// let mut original = [1, 2, 3]; |
| 3737 | /// let original: &mut [i32] = &mut original; |
| 3738 | /// let shared: Arc<[i32]> = Arc::from(original); |
| 3739 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
| 3740 | /// ``` |
| 3741 | #[inline ] |
| 3742 | fn from(v: &mut [T]) -> Arc<[T]> { |
| 3743 | Arc::from(&*v) |
| 3744 | } |
| 3745 | } |
| 3746 | |
| 3747 | #[cfg (not(no_global_oom_handling))] |
| 3748 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
| 3749 | impl From<&str> for Arc<str> { |
| 3750 | /// Allocates a reference-counted `str` and copies `v` into it. |
| 3751 | /// |
| 3752 | /// # Example |
| 3753 | /// |
| 3754 | /// ``` |
| 3755 | /// # use std::sync::Arc; |
| 3756 | /// let shared: Arc<str> = Arc::from("eggplant" ); |
| 3757 | /// assert_eq!("eggplant" , &shared[..]); |
| 3758 | /// ``` |
| 3759 | #[inline ] |
| 3760 | fn from(v: &str) -> Arc<str> { |
| 3761 | let arc: Arc<[u8]> = Arc::<[u8]>::from(v.as_bytes()); |
| 3762 | unsafe { Arc::from_raw(ptr:Arc::into_raw(this:arc) as *const str) } |
| 3763 | } |
| 3764 | } |
| 3765 | |
| 3766 | #[cfg (not(no_global_oom_handling))] |
| 3767 | #[stable (feature = "shared_from_mut_slice" , since = "1.84.0" )] |
| 3768 | impl From<&mut str> for Arc<str> { |
| 3769 | /// Allocates a reference-counted `str` and copies `v` into it. |
| 3770 | /// |
| 3771 | /// # Example |
| 3772 | /// |
| 3773 | /// ``` |
| 3774 | /// # use std::sync::Arc; |
| 3775 | /// let mut original = String::from("eggplant" ); |
| 3776 | /// let original: &mut str = &mut original; |
| 3777 | /// let shared: Arc<str> = Arc::from(original); |
| 3778 | /// assert_eq!("eggplant" , &shared[..]); |
| 3779 | /// ``` |
| 3780 | #[inline ] |
| 3781 | fn from(v: &mut str) -> Arc<str> { |
| 3782 | Arc::from(&*v) |
| 3783 | } |
| 3784 | } |
| 3785 | |
| 3786 | #[cfg (not(no_global_oom_handling))] |
| 3787 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
| 3788 | impl From<String> for Arc<str> { |
| 3789 | /// Allocates a reference-counted `str` and copies `v` into it. |
| 3790 | /// |
| 3791 | /// # Example |
| 3792 | /// |
| 3793 | /// ``` |
| 3794 | /// # use std::sync::Arc; |
| 3795 | /// let unique: String = "eggplant" .to_owned(); |
| 3796 | /// let shared: Arc<str> = Arc::from(unique); |
| 3797 | /// assert_eq!("eggplant" , &shared[..]); |
| 3798 | /// ``` |
| 3799 | #[inline ] |
| 3800 | fn from(v: String) -> Arc<str> { |
| 3801 | Arc::from(&v[..]) |
| 3802 | } |
| 3803 | } |
| 3804 | |
| 3805 | #[cfg (not(no_global_oom_handling))] |
| 3806 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
| 3807 | impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Arc<T, A> { |
| 3808 | /// Move a boxed object to a new, reference-counted allocation. |
| 3809 | /// |
| 3810 | /// # Example |
| 3811 | /// |
| 3812 | /// ``` |
| 3813 | /// # use std::sync::Arc; |
| 3814 | /// let unique: Box<str> = Box::from("eggplant" ); |
| 3815 | /// let shared: Arc<str> = Arc::from(unique); |
| 3816 | /// assert_eq!("eggplant" , &shared[..]); |
| 3817 | /// ``` |
| 3818 | #[inline ] |
| 3819 | fn from(v: Box<T, A>) -> Arc<T, A> { |
| 3820 | Arc::from_box_in(src:v) |
| 3821 | } |
| 3822 | } |
| 3823 | |
| 3824 | #[cfg (not(no_global_oom_handling))] |
| 3825 | #[stable (feature = "shared_from_slice" , since = "1.21.0" )] |
| 3826 | impl<T, A: Allocator + Clone> From<Vec<T, A>> for Arc<[T], A> { |
| 3827 | /// Allocates a reference-counted slice and moves `v`'s items into it. |
| 3828 | /// |
| 3829 | /// # Example |
| 3830 | /// |
| 3831 | /// ``` |
| 3832 | /// # use std::sync::Arc; |
| 3833 | /// let unique: Vec<i32> = vec![1, 2, 3]; |
| 3834 | /// let shared: Arc<[i32]> = Arc::from(unique); |
| 3835 | /// assert_eq!(&[1, 2, 3], &shared[..]); |
| 3836 | /// ``` |
| 3837 | #[inline ] |
| 3838 | fn from(v: Vec<T, A>) -> Arc<[T], A> { |
| 3839 | unsafe { |
| 3840 | let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc(); |
| 3841 | |
| 3842 | let rc_ptr = Self::allocate_for_slice_in(len, &alloc); |
| 3843 | ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).data) as *mut T, len); |
| 3844 | |
| 3845 | // Create a `Vec<T, &A>` with length 0, to deallocate the buffer |
| 3846 | // without dropping its contents or the allocator |
| 3847 | let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc); |
| 3848 | |
| 3849 | Self::from_ptr_in(rc_ptr, alloc) |
| 3850 | } |
| 3851 | } |
| 3852 | } |
| 3853 | |
| 3854 | #[stable (feature = "shared_from_cow" , since = "1.45.0" )] |
| 3855 | impl<'a, B> From<Cow<'a, B>> for Arc<B> |
| 3856 | where |
| 3857 | B: ToOwned + ?Sized, |
| 3858 | Arc<B>: From<&'a B> + From<B::Owned>, |
| 3859 | { |
| 3860 | /// Creates an atomically reference-counted pointer from a clone-on-write |
| 3861 | /// pointer by copying its content. |
| 3862 | /// |
| 3863 | /// # Example |
| 3864 | /// |
| 3865 | /// ```rust |
| 3866 | /// # use std::sync::Arc; |
| 3867 | /// # use std::borrow::Cow; |
| 3868 | /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant" ); |
| 3869 | /// let shared: Arc<str> = Arc::from(cow); |
| 3870 | /// assert_eq!("eggplant" , &shared[..]); |
| 3871 | /// ``` |
| 3872 | #[inline ] |
| 3873 | fn from(cow: Cow<'a, B>) -> Arc<B> { |
| 3874 | match cow { |
| 3875 | Cow::Borrowed(s: &B) => Arc::from(s), |
| 3876 | Cow::Owned(s: ::Owned) => Arc::from(s), |
| 3877 | } |
| 3878 | } |
| 3879 | } |
| 3880 | |
| 3881 | #[stable (feature = "shared_from_str" , since = "1.62.0" )] |
| 3882 | impl From<Arc<str>> for Arc<[u8]> { |
| 3883 | /// Converts an atomically reference-counted string slice into a byte slice. |
| 3884 | /// |
| 3885 | /// # Example |
| 3886 | /// |
| 3887 | /// ``` |
| 3888 | /// # use std::sync::Arc; |
| 3889 | /// let string: Arc<str> = Arc::from("eggplant" ); |
| 3890 | /// let bytes: Arc<[u8]> = Arc::from(string); |
| 3891 | /// assert_eq!("eggplant" .as_bytes(), bytes.as_ref()); |
| 3892 | /// ``` |
| 3893 | #[inline ] |
| 3894 | fn from(rc: Arc<str>) -> Self { |
| 3895 | // SAFETY: `str` has the same layout as `[u8]`. |
| 3896 | unsafe { Arc::from_raw(ptr:Arc::into_raw(this:rc) as *const [u8]) } |
| 3897 | } |
| 3898 | } |
| 3899 | |
| 3900 | #[stable (feature = "boxed_slice_try_from" , since = "1.43.0" )] |
| 3901 | impl<T, A: Allocator, const N: usize> TryFrom<Arc<[T], A>> for Arc<[T; N], A> { |
| 3902 | type Error = Arc<[T], A>; |
| 3903 | |
| 3904 | fn try_from(boxed_slice: Arc<[T], A>) -> Result<Self, Self::Error> { |
| 3905 | if boxed_slice.len() == N { |
| 3906 | let (ptr: NonNull>, alloc: A) = Arc::into_inner_with_allocator(this:boxed_slice); |
| 3907 | Ok(unsafe { Arc::from_inner_in(ptr.cast(), alloc) }) |
| 3908 | } else { |
| 3909 | Err(boxed_slice) |
| 3910 | } |
| 3911 | } |
| 3912 | } |
| 3913 | |
| 3914 | #[cfg (not(no_global_oom_handling))] |
| 3915 | #[stable (feature = "shared_from_iter" , since = "1.37.0" )] |
| 3916 | impl<T> FromIterator<T> for Arc<[T]> { |
| 3917 | /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`. |
| 3918 | /// |
| 3919 | /// # Performance characteristics |
| 3920 | /// |
| 3921 | /// ## The general case |
| 3922 | /// |
| 3923 | /// In the general case, collecting into `Arc<[T]>` is done by first |
| 3924 | /// collecting into a `Vec<T>`. That is, when writing the following: |
| 3925 | /// |
| 3926 | /// ```rust |
| 3927 | /// # use std::sync::Arc; |
| 3928 | /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect(); |
| 3929 | /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); |
| 3930 | /// ``` |
| 3931 | /// |
| 3932 | /// this behaves as if we wrote: |
| 3933 | /// |
| 3934 | /// ```rust |
| 3935 | /// # use std::sync::Arc; |
| 3936 | /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0) |
| 3937 | /// .collect::<Vec<_>>() // The first set of allocations happens here. |
| 3938 | /// .into(); // A second allocation for `Arc<[T]>` happens here. |
| 3939 | /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]); |
| 3940 | /// ``` |
| 3941 | /// |
| 3942 | /// This will allocate as many times as needed for constructing the `Vec<T>` |
| 3943 | /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`. |
| 3944 | /// |
| 3945 | /// ## Iterators of known length |
| 3946 | /// |
| 3947 | /// When your `Iterator` implements `TrustedLen` and is of an exact size, |
| 3948 | /// a single allocation will be made for the `Arc<[T]>`. For example: |
| 3949 | /// |
| 3950 | /// ```rust |
| 3951 | /// # use std::sync::Arc; |
| 3952 | /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here. |
| 3953 | /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>()); |
| 3954 | /// ``` |
| 3955 | fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self { |
| 3956 | ToArcSlice::to_arc_slice(iter.into_iter()) |
| 3957 | } |
| 3958 | } |
| 3959 | |
| 3960 | #[cfg (not(no_global_oom_handling))] |
| 3961 | /// Specialization trait used for collecting into `Arc<[T]>`. |
| 3962 | trait ToArcSlice<T>: Iterator<Item = T> + Sized { |
| 3963 | fn to_arc_slice(self) -> Arc<[T]>; |
| 3964 | } |
| 3965 | |
| 3966 | #[cfg (not(no_global_oom_handling))] |
| 3967 | impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I { |
| 3968 | default fn to_arc_slice(self) -> Arc<[T]> { |
| 3969 | self.collect::<Vec<T>>().into() |
| 3970 | } |
| 3971 | } |
| 3972 | |
| 3973 | #[cfg (not(no_global_oom_handling))] |
| 3974 | impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I { |
| 3975 | fn to_arc_slice(self) -> Arc<[T]> { |
| 3976 | // This is the case for a `TrustedLen` iterator. |
| 3977 | let (low, high) = self.size_hint(); |
| 3978 | if let Some(high) = high { |
| 3979 | debug_assert_eq!( |
| 3980 | low, |
| 3981 | high, |
| 3982 | "TrustedLen iterator's size hint is not exact: {:?}" , |
| 3983 | (low, high) |
| 3984 | ); |
| 3985 | |
| 3986 | unsafe { |
| 3987 | // SAFETY: We need to ensure that the iterator has an exact length and we have. |
| 3988 | Arc::from_iter_exact(self, low) |
| 3989 | } |
| 3990 | } else { |
| 3991 | // TrustedLen contract guarantees that `upper_bound == None` implies an iterator |
| 3992 | // length exceeding `usize::MAX`. |
| 3993 | // The default implementation would collect into a vec which would panic. |
| 3994 | // Thus we panic here immediately without invoking `Vec` code. |
| 3995 | panic!("capacity overflow" ); |
| 3996 | } |
| 3997 | } |
| 3998 | } |
| 3999 | |
| 4000 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 4001 | impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Arc<T, A> { |
| 4002 | fn borrow(&self) -> &T { |
| 4003 | &**self |
| 4004 | } |
| 4005 | } |
| 4006 | |
| 4007 | #[stable (since = "1.5.0" , feature = "smart_ptr_as_ref" )] |
| 4008 | impl<T: ?Sized, A: Allocator> AsRef<T> for Arc<T, A> { |
| 4009 | fn as_ref(&self) -> &T { |
| 4010 | &**self |
| 4011 | } |
| 4012 | } |
| 4013 | |
| 4014 | #[stable (feature = "pin" , since = "1.33.0" )] |
| 4015 | impl<T: ?Sized, A: Allocator> Unpin for Arc<T, A> {} |
| 4016 | |
| 4017 | /// Gets the offset within an `ArcInner` for the payload behind a pointer. |
| 4018 | /// |
| 4019 | /// # Safety |
| 4020 | /// |
| 4021 | /// The pointer must point to (and have valid metadata for) a previously |
| 4022 | /// valid instance of T, but the T is allowed to be dropped. |
| 4023 | unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize { |
| 4024 | // Align the unsized value to the end of the ArcInner. |
| 4025 | // Because RcInner is repr(C), it will always be the last field in memory. |
| 4026 | // SAFETY: since the only unsized types possible are slices, trait objects, |
| 4027 | // and extern types, the input safety requirement is currently enough to |
| 4028 | // satisfy the requirements of align_of_val_raw; this is an implementation |
| 4029 | // detail of the language that must not be relied upon outside of std. |
| 4030 | unsafe { data_offset_align(align_of_val_raw(val:ptr)) } |
| 4031 | } |
| 4032 | |
| 4033 | #[inline ] |
| 4034 | fn data_offset_align(align: usize) -> usize { |
| 4035 | let layout: Layout = Layout::new::<ArcInner<()>>(); |
| 4036 | layout.size() + layout.padding_needed_for(align) |
| 4037 | } |
| 4038 | |
| 4039 | /// A unique owning pointer to an [`ArcInner`] **that does not imply the contents are initialized,** |
| 4040 | /// but will deallocate it (without dropping the value) when dropped. |
| 4041 | /// |
| 4042 | /// This is a helper for [`Arc::make_mut()`] to ensure correct cleanup on panic. |
| 4043 | #[cfg (not(no_global_oom_handling))] |
| 4044 | struct UniqueArcUninit<T: ?Sized, A: Allocator> { |
| 4045 | ptr: NonNull<ArcInner<T>>, |
| 4046 | layout_for_value: Layout, |
| 4047 | alloc: Option<A>, |
| 4048 | } |
| 4049 | |
| 4050 | #[cfg (not(no_global_oom_handling))] |
| 4051 | impl<T: ?Sized, A: Allocator> UniqueArcUninit<T, A> { |
| 4052 | /// Allocates an ArcInner with layout suitable to contain `for_value` or a clone of it. |
| 4053 | fn new(for_value: &T, alloc: A) -> UniqueArcUninit<T, A> { |
| 4054 | let layout = Layout::for_value(for_value); |
| 4055 | let ptr = unsafe { |
| 4056 | Arc::allocate_for_layout( |
| 4057 | layout, |
| 4058 | |layout_for_arcinner| alloc.allocate(layout_for_arcinner), |
| 4059 | |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const ArcInner<T>), |
| 4060 | ) |
| 4061 | }; |
| 4062 | Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) } |
| 4063 | } |
| 4064 | |
| 4065 | /// Returns the pointer to be written into to initialize the [`Arc`]. |
| 4066 | fn data_ptr(&mut self) -> *mut T { |
| 4067 | let offset = data_offset_align(self.layout_for_value.align()); |
| 4068 | unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T } |
| 4069 | } |
| 4070 | |
| 4071 | /// Upgrade this into a normal [`Arc`]. |
| 4072 | /// |
| 4073 | /// # Safety |
| 4074 | /// |
| 4075 | /// The data must have been initialized (by writing to [`Self::data_ptr()`]). |
| 4076 | unsafe fn into_arc(self) -> Arc<T, A> { |
| 4077 | let mut this = ManuallyDrop::new(self); |
| 4078 | let ptr = this.ptr.as_ptr(); |
| 4079 | let alloc = this.alloc.take().unwrap(); |
| 4080 | |
| 4081 | // SAFETY: The pointer is valid as per `UniqueArcUninit::new`, and the caller is responsible |
| 4082 | // for having initialized the data. |
| 4083 | unsafe { Arc::from_ptr_in(ptr, alloc) } |
| 4084 | } |
| 4085 | } |
| 4086 | |
| 4087 | #[cfg (not(no_global_oom_handling))] |
| 4088 | impl<T: ?Sized, A: Allocator> Drop for UniqueArcUninit<T, A> { |
| 4089 | fn drop(&mut self) { |
| 4090 | // SAFETY: |
| 4091 | // * new() produced a pointer safe to deallocate. |
| 4092 | // * We own the pointer unless into_arc() was called, which forgets us. |
| 4093 | unsafe { |
| 4094 | self.alloc.take().unwrap().deallocate( |
| 4095 | self.ptr.cast(), |
| 4096 | arcinner_layout_for_value_layout(self.layout_for_value), |
| 4097 | ); |
| 4098 | } |
| 4099 | } |
| 4100 | } |
| 4101 | |
| 4102 | #[stable (feature = "arc_error" , since = "1.52.0" )] |
| 4103 | impl<T: core::error::Error + ?Sized> core::error::Error for Arc<T> { |
| 4104 | #[allow (deprecated, deprecated_in_future)] |
| 4105 | fn description(&self) -> &str { |
| 4106 | core::error::Error::description(&**self) |
| 4107 | } |
| 4108 | |
| 4109 | #[allow (deprecated)] |
| 4110 | fn cause(&self) -> Option<&dyn core::error::Error> { |
| 4111 | core::error::Error::cause(&**self) |
| 4112 | } |
| 4113 | |
| 4114 | fn source(&self) -> Option<&(dyn core::error::Error + 'static)> { |
| 4115 | core::error::Error::source(&**self) |
| 4116 | } |
| 4117 | |
| 4118 | fn provide<'a>(&'a self, req: &mut core::error::Request<'a>) { |
| 4119 | core::error::Error::provide(&**self, request:req); |
| 4120 | } |
| 4121 | } |
| 4122 | |
| 4123 | /// A uniquely owned [`Arc`]. |
| 4124 | /// |
| 4125 | /// This represents an `Arc` that is known to be uniquely owned -- that is, have exactly one strong |
| 4126 | /// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong |
| 4127 | /// references will fail unless the `UniqueArc` they point to has been converted into a regular `Arc`. |
| 4128 | /// |
| 4129 | /// Because it is uniquely owned, the contents of a `UniqueArc` can be freely mutated. A common |
| 4130 | /// use case is to have an object be mutable during its initialization phase but then have it become |
| 4131 | /// immutable and converted to a normal `Arc`. |
| 4132 | /// |
| 4133 | /// This can be used as a flexible way to create cyclic data structures, as in the example below. |
| 4134 | /// |
| 4135 | /// ``` |
| 4136 | /// #![feature(unique_rc_arc)] |
| 4137 | /// use std::sync::{Arc, Weak, UniqueArc}; |
| 4138 | /// |
| 4139 | /// struct Gadget { |
| 4140 | /// me: Weak<Gadget>, |
| 4141 | /// } |
| 4142 | /// |
| 4143 | /// fn create_gadget() -> Option<Arc<Gadget>> { |
| 4144 | /// let mut rc = UniqueArc::new(Gadget { |
| 4145 | /// me: Weak::new(), |
| 4146 | /// }); |
| 4147 | /// rc.me = UniqueArc::downgrade(&rc); |
| 4148 | /// Some(UniqueArc::into_arc(rc)) |
| 4149 | /// } |
| 4150 | /// |
| 4151 | /// create_gadget().unwrap(); |
| 4152 | /// ``` |
| 4153 | /// |
| 4154 | /// An advantage of using `UniqueArc` over [`Arc::new_cyclic`] to build cyclic data structures is that |
| 4155 | /// [`Arc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the |
| 4156 | /// previous example, `UniqueArc` allows for more flexibility in the construction of cyclic data, |
| 4157 | /// including fallible or async constructors. |
| 4158 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4159 | pub struct UniqueArc< |
| 4160 | T: ?Sized, |
| 4161 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
| 4162 | > { |
| 4163 | ptr: NonNull<ArcInner<T>>, |
| 4164 | // Define the ownership of `ArcInner<T>` for drop-check |
| 4165 | _marker: PhantomData<ArcInner<T>>, |
| 4166 | // Invariance is necessary for soundness: once other `Weak` |
| 4167 | // references exist, we already have a form of shared mutability! |
| 4168 | _marker2: PhantomData<*mut T>, |
| 4169 | alloc: A, |
| 4170 | } |
| 4171 | |
| 4172 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4173 | unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for UniqueArc<T, A> {} |
| 4174 | |
| 4175 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4176 | unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for UniqueArc<T, A> {} |
| 4177 | |
| 4178 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4179 | // #[unstable(feature = "coerce_unsized", issue = "18598")] |
| 4180 | impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueArc<U, A>> |
| 4181 | for UniqueArc<T, A> |
| 4182 | { |
| 4183 | } |
| 4184 | |
| 4185 | //#[unstable(feature = "unique_rc_arc", issue = "112566")] |
| 4186 | #[unstable (feature = "dispatch_from_dyn" , issue = "none" )] |
| 4187 | impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueArc<U>> for UniqueArc<T> {} |
| 4188 | |
| 4189 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4190 | impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueArc<T, A> { |
| 4191 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 4192 | fmt::Display::fmt(&**self, f) |
| 4193 | } |
| 4194 | } |
| 4195 | |
| 4196 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4197 | impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueArc<T, A> { |
| 4198 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 4199 | fmt::Debug::fmt(&**self, f) |
| 4200 | } |
| 4201 | } |
| 4202 | |
| 4203 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4204 | impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueArc<T, A> { |
| 4205 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 4206 | fmt::Pointer::fmt(&(&raw const **self), f) |
| 4207 | } |
| 4208 | } |
| 4209 | |
| 4210 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4211 | impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueArc<T, A> { |
| 4212 | fn borrow(&self) -> &T { |
| 4213 | &**self |
| 4214 | } |
| 4215 | } |
| 4216 | |
| 4217 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4218 | impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueArc<T, A> { |
| 4219 | fn borrow_mut(&mut self) -> &mut T { |
| 4220 | &mut **self |
| 4221 | } |
| 4222 | } |
| 4223 | |
| 4224 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4225 | impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueArc<T, A> { |
| 4226 | fn as_ref(&self) -> &T { |
| 4227 | &**self |
| 4228 | } |
| 4229 | } |
| 4230 | |
| 4231 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4232 | impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueArc<T, A> { |
| 4233 | fn as_mut(&mut self) -> &mut T { |
| 4234 | &mut **self |
| 4235 | } |
| 4236 | } |
| 4237 | |
| 4238 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4239 | impl<T: ?Sized, A: Allocator> Unpin for UniqueArc<T, A> {} |
| 4240 | |
| 4241 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4242 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueArc<T, A> { |
| 4243 | /// Equality for two `UniqueArc`s. |
| 4244 | /// |
| 4245 | /// Two `UniqueArc`s are equal if their inner values are equal. |
| 4246 | /// |
| 4247 | /// # Examples |
| 4248 | /// |
| 4249 | /// ``` |
| 4250 | /// #![feature(unique_rc_arc)] |
| 4251 | /// use std::sync::UniqueArc; |
| 4252 | /// |
| 4253 | /// let five = UniqueArc::new(5); |
| 4254 | /// |
| 4255 | /// assert!(five == UniqueArc::new(5)); |
| 4256 | /// ``` |
| 4257 | #[inline ] |
| 4258 | fn eq(&self, other: &Self) -> bool { |
| 4259 | PartialEq::eq(&**self, &**other) |
| 4260 | } |
| 4261 | } |
| 4262 | |
| 4263 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4264 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueArc<T, A> { |
| 4265 | /// Partial comparison for two `UniqueArc`s. |
| 4266 | /// |
| 4267 | /// The two are compared by calling `partial_cmp()` on their inner values. |
| 4268 | /// |
| 4269 | /// # Examples |
| 4270 | /// |
| 4271 | /// ``` |
| 4272 | /// #![feature(unique_rc_arc)] |
| 4273 | /// use std::sync::UniqueArc; |
| 4274 | /// use std::cmp::Ordering; |
| 4275 | /// |
| 4276 | /// let five = UniqueArc::new(5); |
| 4277 | /// |
| 4278 | /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueArc::new(6))); |
| 4279 | /// ``` |
| 4280 | #[inline (always)] |
| 4281 | fn partial_cmp(&self, other: &UniqueArc<T, A>) -> Option<Ordering> { |
| 4282 | (**self).partial_cmp(&**other) |
| 4283 | } |
| 4284 | |
| 4285 | /// Less-than comparison for two `UniqueArc`s. |
| 4286 | /// |
| 4287 | /// The two are compared by calling `<` on their inner values. |
| 4288 | /// |
| 4289 | /// # Examples |
| 4290 | /// |
| 4291 | /// ``` |
| 4292 | /// #![feature(unique_rc_arc)] |
| 4293 | /// use std::sync::UniqueArc; |
| 4294 | /// |
| 4295 | /// let five = UniqueArc::new(5); |
| 4296 | /// |
| 4297 | /// assert!(five < UniqueArc::new(6)); |
| 4298 | /// ``` |
| 4299 | #[inline (always)] |
| 4300 | fn lt(&self, other: &UniqueArc<T, A>) -> bool { |
| 4301 | **self < **other |
| 4302 | } |
| 4303 | |
| 4304 | /// 'Less than or equal to' comparison for two `UniqueArc`s. |
| 4305 | /// |
| 4306 | /// The two are compared by calling `<=` on their inner values. |
| 4307 | /// |
| 4308 | /// # Examples |
| 4309 | /// |
| 4310 | /// ``` |
| 4311 | /// #![feature(unique_rc_arc)] |
| 4312 | /// use std::sync::UniqueArc; |
| 4313 | /// |
| 4314 | /// let five = UniqueArc::new(5); |
| 4315 | /// |
| 4316 | /// assert!(five <= UniqueArc::new(5)); |
| 4317 | /// ``` |
| 4318 | #[inline (always)] |
| 4319 | fn le(&self, other: &UniqueArc<T, A>) -> bool { |
| 4320 | **self <= **other |
| 4321 | } |
| 4322 | |
| 4323 | /// Greater-than comparison for two `UniqueArc`s. |
| 4324 | /// |
| 4325 | /// The two are compared by calling `>` on their inner values. |
| 4326 | /// |
| 4327 | /// # Examples |
| 4328 | /// |
| 4329 | /// ``` |
| 4330 | /// #![feature(unique_rc_arc)] |
| 4331 | /// use std::sync::UniqueArc; |
| 4332 | /// |
| 4333 | /// let five = UniqueArc::new(5); |
| 4334 | /// |
| 4335 | /// assert!(five > UniqueArc::new(4)); |
| 4336 | /// ``` |
| 4337 | #[inline (always)] |
| 4338 | fn gt(&self, other: &UniqueArc<T, A>) -> bool { |
| 4339 | **self > **other |
| 4340 | } |
| 4341 | |
| 4342 | /// 'Greater than or equal to' comparison for two `UniqueArc`s. |
| 4343 | /// |
| 4344 | /// The two are compared by calling `>=` on their inner values. |
| 4345 | /// |
| 4346 | /// # Examples |
| 4347 | /// |
| 4348 | /// ``` |
| 4349 | /// #![feature(unique_rc_arc)] |
| 4350 | /// use std::sync::UniqueArc; |
| 4351 | /// |
| 4352 | /// let five = UniqueArc::new(5); |
| 4353 | /// |
| 4354 | /// assert!(five >= UniqueArc::new(5)); |
| 4355 | /// ``` |
| 4356 | #[inline (always)] |
| 4357 | fn ge(&self, other: &UniqueArc<T, A>) -> bool { |
| 4358 | **self >= **other |
| 4359 | } |
| 4360 | } |
| 4361 | |
| 4362 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4363 | impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueArc<T, A> { |
| 4364 | /// Comparison for two `UniqueArc`s. |
| 4365 | /// |
| 4366 | /// The two are compared by calling `cmp()` on their inner values. |
| 4367 | /// |
| 4368 | /// # Examples |
| 4369 | /// |
| 4370 | /// ``` |
| 4371 | /// #![feature(unique_rc_arc)] |
| 4372 | /// use std::sync::UniqueArc; |
| 4373 | /// use std::cmp::Ordering; |
| 4374 | /// |
| 4375 | /// let five = UniqueArc::new(5); |
| 4376 | /// |
| 4377 | /// assert_eq!(Ordering::Less, five.cmp(&UniqueArc::new(6))); |
| 4378 | /// ``` |
| 4379 | #[inline ] |
| 4380 | fn cmp(&self, other: &UniqueArc<T, A>) -> Ordering { |
| 4381 | (**self).cmp(&**other) |
| 4382 | } |
| 4383 | } |
| 4384 | |
| 4385 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4386 | impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueArc<T, A> {} |
| 4387 | |
| 4388 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4389 | impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueArc<T, A> { |
| 4390 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 4391 | (**self).hash(state); |
| 4392 | } |
| 4393 | } |
| 4394 | |
| 4395 | impl<T> UniqueArc<T, Global> { |
| 4396 | /// Creates a new `UniqueArc`. |
| 4397 | /// |
| 4398 | /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading |
| 4399 | /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`]. |
| 4400 | /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will |
| 4401 | /// point to the new [`Arc`]. |
| 4402 | #[cfg (not(no_global_oom_handling))] |
| 4403 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4404 | #[must_use ] |
| 4405 | pub fn new(value: T) -> Self { |
| 4406 | Self::new_in(data:value, alloc:Global) |
| 4407 | } |
| 4408 | } |
| 4409 | |
| 4410 | impl<T, A: Allocator> UniqueArc<T, A> { |
| 4411 | /// Creates a new `UniqueArc` in the provided allocator. |
| 4412 | /// |
| 4413 | /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading |
| 4414 | /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`]. |
| 4415 | /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will |
| 4416 | /// point to the new [`Arc`]. |
| 4417 | #[cfg (not(no_global_oom_handling))] |
| 4418 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4419 | #[must_use ] |
| 4420 | // #[unstable(feature = "allocator_api", issue = "32838")] |
| 4421 | pub fn new_in(data: T, alloc: A) -> Self { |
| 4422 | let (ptr, alloc) = Box::into_unique(Box::new_in( |
| 4423 | ArcInner { |
| 4424 | strong: atomic::AtomicUsize::new(0), |
| 4425 | // keep one weak reference so if all the weak pointers that are created are dropped |
| 4426 | // the UniqueArc still stays valid. |
| 4427 | weak: atomic::AtomicUsize::new(1), |
| 4428 | data, |
| 4429 | }, |
| 4430 | alloc, |
| 4431 | )); |
| 4432 | Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc } |
| 4433 | } |
| 4434 | } |
| 4435 | |
| 4436 | impl<T: ?Sized, A: Allocator> UniqueArc<T, A> { |
| 4437 | /// Converts the `UniqueArc` into a regular [`Arc`]. |
| 4438 | /// |
| 4439 | /// This consumes the `UniqueArc` and returns a regular [`Arc`] that contains the `value` that |
| 4440 | /// is passed to `into_arc`. |
| 4441 | /// |
| 4442 | /// Any weak references created before this method is called can now be upgraded to strong |
| 4443 | /// references. |
| 4444 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4445 | #[must_use ] |
| 4446 | pub fn into_arc(this: Self) -> Arc<T, A> { |
| 4447 | let this = ManuallyDrop::new(this); |
| 4448 | |
| 4449 | // Move the allocator out. |
| 4450 | // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in |
| 4451 | // a `ManuallyDrop`. |
| 4452 | let alloc: A = unsafe { ptr::read(&this.alloc) }; |
| 4453 | |
| 4454 | // SAFETY: This pointer was allocated at creation time so we know it is valid. |
| 4455 | unsafe { |
| 4456 | // Convert our weak reference into a strong reference |
| 4457 | (*this.ptr.as_ptr()).strong.store(1, Release); |
| 4458 | Arc::from_inner_in(this.ptr, alloc) |
| 4459 | } |
| 4460 | } |
| 4461 | } |
| 4462 | |
| 4463 | impl<T: ?Sized, A: Allocator + Clone> UniqueArc<T, A> { |
| 4464 | /// Creates a new weak reference to the `UniqueArc`. |
| 4465 | /// |
| 4466 | /// Attempting to upgrade this weak reference will fail before the `UniqueArc` has been converted |
| 4467 | /// to a [`Arc`] using [`UniqueArc::into_arc`]. |
| 4468 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4469 | #[must_use ] |
| 4470 | pub fn downgrade(this: &Self) -> Weak<T, A> { |
| 4471 | // Using a relaxed ordering is alright here, as knowledge of the |
| 4472 | // original reference prevents other threads from erroneously deleting |
| 4473 | // the object or converting the object to a normal `Arc<T, A>`. |
| 4474 | // |
| 4475 | // Note that we don't need to test if the weak counter is locked because there |
| 4476 | // are no such operations like `Arc::get_mut` or `Arc::make_mut` that will lock |
| 4477 | // the weak counter. |
| 4478 | // |
| 4479 | // SAFETY: This pointer was allocated at creation time so we know it is valid. |
| 4480 | let old_size = unsafe { (*this.ptr.as_ptr()).weak.fetch_add(1, Relaxed) }; |
| 4481 | |
| 4482 | // See comments in Arc::clone() for why we do this (for mem::forget). |
| 4483 | if old_size > MAX_REFCOUNT { |
| 4484 | abort(); |
| 4485 | } |
| 4486 | |
| 4487 | Weak { ptr: this.ptr, alloc: this.alloc.clone() } |
| 4488 | } |
| 4489 | } |
| 4490 | |
| 4491 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4492 | impl<T: ?Sized, A: Allocator> Deref for UniqueArc<T, A> { |
| 4493 | type Target = T; |
| 4494 | |
| 4495 | fn deref(&self) -> &T { |
| 4496 | // SAFETY: This pointer was allocated at creation time so we know it is valid. |
| 4497 | unsafe { &self.ptr.as_ref().data } |
| 4498 | } |
| 4499 | } |
| 4500 | |
| 4501 | // #[unstable(feature = "unique_rc_arc", issue = "112566")] |
| 4502 | #[unstable (feature = "pin_coerce_unsized_trait" , issue = "123430" )] |
| 4503 | unsafe impl<T: ?Sized> PinCoerceUnsized for UniqueArc<T> {} |
| 4504 | |
| 4505 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4506 | impl<T: ?Sized, A: Allocator> DerefMut for UniqueArc<T, A> { |
| 4507 | fn deref_mut(&mut self) -> &mut T { |
| 4508 | // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we |
| 4509 | // have unique ownership and therefore it's safe to make a mutable reference because |
| 4510 | // `UniqueArc` owns the only strong reference to itself. |
| 4511 | // We also need to be careful to only create a mutable reference to the `data` field, |
| 4512 | // as a mutable reference to the entire `ArcInner` would assert uniqueness over the |
| 4513 | // ref count fields too, invalidating any attempt by `Weak`s to access the ref count. |
| 4514 | unsafe { &mut (*self.ptr.as_ptr()).data } |
| 4515 | } |
| 4516 | } |
| 4517 | |
| 4518 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4519 | // #[unstable(feature = "deref_pure_trait", issue = "87121")] |
| 4520 | unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueArc<T, A> {} |
| 4521 | |
| 4522 | #[unstable (feature = "unique_rc_arc" , issue = "112566" )] |
| 4523 | unsafe impl<#[may_dangle ] T: ?Sized, A: Allocator> Drop for UniqueArc<T, A> { |
| 4524 | fn drop(&mut self) { |
| 4525 | // See `Arc::drop_slow` which drops an `Arc` with a strong count of 0. |
| 4526 | // SAFETY: This pointer was allocated at creation time so we know it is valid. |
| 4527 | let _weak: Weak = Weak { ptr: self.ptr, alloc: &self.alloc }; |
| 4528 | |
| 4529 | unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) }; |
| 4530 | } |
| 4531 | } |
| 4532 | |