| 1 | // This is a part of Chrono. |
| 2 | // See README.md and LICENSE.txt for details. |
| 3 | |
| 4 | //! ISO 8601 date and time without timezone. |
| 5 | |
| 6 | #[cfg (feature = "alloc" )] |
| 7 | use core::borrow::Borrow; |
| 8 | use core::fmt::Write; |
| 9 | use core::ops::{Add, AddAssign, Sub, SubAssign}; |
| 10 | use core::time::Duration; |
| 11 | use core::{fmt, str}; |
| 12 | |
| 13 | #[cfg (any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ))] |
| 14 | use rkyv::{Archive, Deserialize, Serialize}; |
| 15 | |
| 16 | #[cfg (feature = "alloc" )] |
| 17 | use crate::format::DelayedFormat; |
| 18 | use crate::format::{parse, parse_and_remainder, ParseError, ParseResult, Parsed, StrftimeItems}; |
| 19 | use crate::format::{Fixed, Item, Numeric, Pad}; |
| 20 | use crate::naive::{Days, IsoWeek, NaiveDate, NaiveTime}; |
| 21 | use crate::offset::Utc; |
| 22 | use crate::time_delta::NANOS_PER_SEC; |
| 23 | use crate::{ |
| 24 | expect, try_opt, DateTime, Datelike, FixedOffset, MappedLocalTime, Months, TimeDelta, TimeZone, |
| 25 | Timelike, Weekday, |
| 26 | }; |
| 27 | |
| 28 | /// Tools to help serializing/deserializing `NaiveDateTime`s |
| 29 | #[cfg (feature = "serde" )] |
| 30 | pub(crate) mod serde; |
| 31 | |
| 32 | #[cfg (test)] |
| 33 | mod tests; |
| 34 | |
| 35 | /// The minimum possible `NaiveDateTime`. |
| 36 | #[deprecated (since = "0.4.20" , note = "Use NaiveDateTime::MIN instead" )] |
| 37 | pub const MIN_DATETIME: NaiveDateTime = NaiveDateTime::MIN; |
| 38 | /// The maximum possible `NaiveDateTime`. |
| 39 | #[deprecated (since = "0.4.20" , note = "Use NaiveDateTime::MAX instead" )] |
| 40 | pub const MAX_DATETIME: NaiveDateTime = NaiveDateTime::MAX; |
| 41 | |
| 42 | /// ISO 8601 combined date and time without timezone. |
| 43 | /// |
| 44 | /// # Example |
| 45 | /// |
| 46 | /// `NaiveDateTime` is commonly created from [`NaiveDate`]. |
| 47 | /// |
| 48 | /// ``` |
| 49 | /// use chrono::{NaiveDate, NaiveDateTime}; |
| 50 | /// |
| 51 | /// let dt: NaiveDateTime = |
| 52 | /// NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
| 53 | /// # let _ = dt; |
| 54 | /// ``` |
| 55 | /// |
| 56 | /// You can use typical [date-like](Datelike) and [time-like](Timelike) methods, |
| 57 | /// provided that relevant traits are in the scope. |
| 58 | /// |
| 59 | /// ``` |
| 60 | /// # use chrono::{NaiveDate, NaiveDateTime}; |
| 61 | /// # let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
| 62 | /// use chrono::{Datelike, Timelike, Weekday}; |
| 63 | /// |
| 64 | /// assert_eq!(dt.weekday(), Weekday::Fri); |
| 65 | /// assert_eq!(dt.num_seconds_from_midnight(), 33011); |
| 66 | /// ``` |
| 67 | #[derive (PartialEq, Eq, Hash, PartialOrd, Ord, Copy, Clone)] |
| 68 | #[cfg_attr ( |
| 69 | any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ), |
| 70 | derive(Archive, Deserialize, Serialize), |
| 71 | archive(compare(PartialEq, PartialOrd)), |
| 72 | archive_attr(derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)) |
| 73 | )] |
| 74 | #[cfg_attr (feature = "rkyv-validation" , archive(check_bytes))] |
| 75 | #[cfg_attr (all(feature = "arbitrary" , feature = "std" ), derive(arbitrary::Arbitrary))] |
| 76 | pub struct NaiveDateTime { |
| 77 | date: NaiveDate, |
| 78 | time: NaiveTime, |
| 79 | } |
| 80 | |
| 81 | impl NaiveDateTime { |
| 82 | /// Makes a new `NaiveDateTime` from date and time components. |
| 83 | /// Equivalent to [`date.and_time(time)`](./struct.NaiveDate.html#method.and_time) |
| 84 | /// and many other helper constructors on `NaiveDate`. |
| 85 | /// |
| 86 | /// # Example |
| 87 | /// |
| 88 | /// ``` |
| 89 | /// use chrono::{NaiveDate, NaiveDateTime, NaiveTime}; |
| 90 | /// |
| 91 | /// let d = NaiveDate::from_ymd_opt(2015, 6, 3).unwrap(); |
| 92 | /// let t = NaiveTime::from_hms_milli_opt(12, 34, 56, 789).unwrap(); |
| 93 | /// |
| 94 | /// let dt = NaiveDateTime::new(d, t); |
| 95 | /// assert_eq!(dt.date(), d); |
| 96 | /// assert_eq!(dt.time(), t); |
| 97 | /// ``` |
| 98 | #[inline ] |
| 99 | pub const fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime { |
| 100 | NaiveDateTime { date, time } |
| 101 | } |
| 102 | |
| 103 | /// Makes a new `NaiveDateTime` corresponding to a UTC date and time, |
| 104 | /// from the number of non-leap seconds |
| 105 | /// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp") |
| 106 | /// and the number of nanoseconds since the last whole non-leap second. |
| 107 | /// |
| 108 | /// For a non-naive version of this function see [`TimeZone::timestamp`]. |
| 109 | /// |
| 110 | /// The nanosecond part can exceed 1,000,000,000 in order to represent a |
| 111 | /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`. |
| 112 | /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.) |
| 113 | /// |
| 114 | /// # Panics |
| 115 | /// |
| 116 | /// Panics if the number of seconds would be out of range for a `NaiveDateTime` (more than |
| 117 | /// ca. 262,000 years away from common era), and panics on an invalid nanosecond (2 seconds or |
| 118 | /// more). |
| 119 | #[deprecated (since = "0.4.23" , note = "use `DateTime::from_timestamp` instead" )] |
| 120 | #[inline ] |
| 121 | #[must_use ] |
| 122 | pub const fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime { |
| 123 | let datetime = |
| 124 | expect(DateTime::from_timestamp(secs, nsecs), "invalid or out-of-range datetime" ); |
| 125 | datetime.naive_utc() |
| 126 | } |
| 127 | |
| 128 | /// Creates a new [NaiveDateTime] from milliseconds since the UNIX epoch. |
| 129 | /// |
| 130 | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
| 131 | /// |
| 132 | /// # Errors |
| 133 | /// |
| 134 | /// Returns `None` if the number of milliseconds would be out of range for a `NaiveDateTime` |
| 135 | /// (more than ca. 262,000 years away from common era) |
| 136 | #[deprecated (since = "0.4.35" , note = "use `DateTime::from_timestamp_millis` instead" )] |
| 137 | #[inline ] |
| 138 | #[must_use ] |
| 139 | pub const fn from_timestamp_millis(millis: i64) -> Option<NaiveDateTime> { |
| 140 | Some(try_opt!(DateTime::from_timestamp_millis(millis)).naive_utc()) |
| 141 | } |
| 142 | |
| 143 | /// Creates a new [NaiveDateTime] from microseconds since the UNIX epoch. |
| 144 | /// |
| 145 | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
| 146 | /// |
| 147 | /// # Errors |
| 148 | /// |
| 149 | /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime` |
| 150 | /// (more than ca. 262,000 years away from common era) |
| 151 | #[deprecated (since = "0.4.35" , note = "use `DateTime::from_timestamp_micros` instead" )] |
| 152 | #[inline ] |
| 153 | #[must_use ] |
| 154 | pub const fn from_timestamp_micros(micros: i64) -> Option<NaiveDateTime> { |
| 155 | let secs = micros.div_euclid(1_000_000); |
| 156 | let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000; |
| 157 | Some(try_opt!(DateTime::<Utc>::from_timestamp(secs, nsecs)).naive_utc()) |
| 158 | } |
| 159 | |
| 160 | /// Creates a new [NaiveDateTime] from nanoseconds since the UNIX epoch. |
| 161 | /// |
| 162 | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
| 163 | /// |
| 164 | /// # Errors |
| 165 | /// |
| 166 | /// Returns `None` if the number of nanoseconds would be out of range for a `NaiveDateTime` |
| 167 | /// (more than ca. 262,000 years away from common era) |
| 168 | #[deprecated (since = "0.4.35" , note = "use `DateTime::from_timestamp_nanos` instead" )] |
| 169 | #[inline ] |
| 170 | #[must_use ] |
| 171 | pub const fn from_timestamp_nanos(nanos: i64) -> Option<NaiveDateTime> { |
| 172 | let secs = nanos.div_euclid(NANOS_PER_SEC as i64); |
| 173 | let nsecs = nanos.rem_euclid(NANOS_PER_SEC as i64) as u32; |
| 174 | Some(try_opt!(DateTime::from_timestamp(secs, nsecs)).naive_utc()) |
| 175 | } |
| 176 | |
| 177 | /// Makes a new `NaiveDateTime` corresponding to a UTC date and time, |
| 178 | /// from the number of non-leap seconds |
| 179 | /// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp") |
| 180 | /// and the number of nanoseconds since the last whole non-leap second. |
| 181 | /// |
| 182 | /// The nanosecond part can exceed 1,000,000,000 in order to represent a |
| 183 | /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`. |
| 184 | /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.) |
| 185 | /// |
| 186 | /// # Errors |
| 187 | /// |
| 188 | /// Returns `None` if the number of seconds would be out of range for a `NaiveDateTime` (more |
| 189 | /// than ca. 262,000 years away from common era), and panics on an invalid nanosecond |
| 190 | /// (2 seconds or more). |
| 191 | #[deprecated (since = "0.4.35" , note = "use `DateTime::from_timestamp` instead" )] |
| 192 | #[inline ] |
| 193 | #[must_use ] |
| 194 | pub const fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime> { |
| 195 | Some(try_opt!(DateTime::from_timestamp(secs, nsecs)).naive_utc()) |
| 196 | } |
| 197 | |
| 198 | /// Parses a string with the specified format string and returns a new `NaiveDateTime`. |
| 199 | /// See the [`format::strftime` module](crate::format::strftime) |
| 200 | /// on the supported escape sequences. |
| 201 | /// |
| 202 | /// # Example |
| 203 | /// |
| 204 | /// ``` |
| 205 | /// use chrono::{NaiveDate, NaiveDateTime}; |
| 206 | /// |
| 207 | /// let parse_from_str = NaiveDateTime::parse_from_str; |
| 208 | /// |
| 209 | /// assert_eq!( |
| 210 | /// parse_from_str("2015-09-05 23:56:04" , "%Y-%m-%d %H:%M:%S" ), |
| 211 | /// Ok(NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap()) |
| 212 | /// ); |
| 213 | /// assert_eq!( |
| 214 | /// parse_from_str("5sep2015pm012345.6789" , "%d%b%Y%p%I%M%S%.f" ), |
| 215 | /// Ok(NaiveDate::from_ymd_opt(2015, 9, 5) |
| 216 | /// .unwrap() |
| 217 | /// .and_hms_micro_opt(13, 23, 45, 678_900) |
| 218 | /// .unwrap()) |
| 219 | /// ); |
| 220 | /// ``` |
| 221 | /// |
| 222 | /// Offset is ignored for the purpose of parsing. |
| 223 | /// |
| 224 | /// ``` |
| 225 | /// # use chrono::{NaiveDateTime, NaiveDate}; |
| 226 | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
| 227 | /// assert_eq!( |
| 228 | /// parse_from_str("2014-5-17T12:34:56+09:30" , "%Y-%m-%dT%H:%M:%S%z" ), |
| 229 | /// Ok(NaiveDate::from_ymd_opt(2014, 5, 17).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 230 | /// ); |
| 231 | /// ``` |
| 232 | /// |
| 233 | /// [Leap seconds](./struct.NaiveTime.html#leap-second-handling) are correctly handled by |
| 234 | /// treating any time of the form `hh:mm:60` as a leap second. |
| 235 | /// (This equally applies to the formatting, so the round trip is possible.) |
| 236 | /// |
| 237 | /// ``` |
| 238 | /// # use chrono::{NaiveDateTime, NaiveDate}; |
| 239 | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
| 240 | /// assert_eq!( |
| 241 | /// parse_from_str("2015-07-01 08:59:60.123" , "%Y-%m-%d %H:%M:%S%.f" ), |
| 242 | /// Ok(NaiveDate::from_ymd_opt(2015, 7, 1) |
| 243 | /// .unwrap() |
| 244 | /// .and_hms_milli_opt(8, 59, 59, 1_123) |
| 245 | /// .unwrap()) |
| 246 | /// ); |
| 247 | /// ``` |
| 248 | /// |
| 249 | /// Missing seconds are assumed to be zero, |
| 250 | /// but out-of-bound times or insufficient fields are errors otherwise. |
| 251 | /// |
| 252 | /// ``` |
| 253 | /// # use chrono::{NaiveDateTime, NaiveDate}; |
| 254 | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
| 255 | /// assert_eq!( |
| 256 | /// parse_from_str("94/9/4 7:15" , "%y/%m/%d %H:%M" ), |
| 257 | /// Ok(NaiveDate::from_ymd_opt(1994, 9, 4).unwrap().and_hms_opt(7, 15, 0).unwrap()) |
| 258 | /// ); |
| 259 | /// |
| 260 | /// assert!(parse_from_str("04m33s" , "%Mm%Ss" ).is_err()); |
| 261 | /// assert!(parse_from_str("94/9/4 12" , "%y/%m/%d %H" ).is_err()); |
| 262 | /// assert!(parse_from_str("94/9/4 17:60" , "%y/%m/%d %H:%M" ).is_err()); |
| 263 | /// assert!(parse_from_str("94/9/4 24:00:00" , "%y/%m/%d %H:%M:%S" ).is_err()); |
| 264 | /// ``` |
| 265 | /// |
| 266 | /// All parsed fields should be consistent to each other, otherwise it's an error. |
| 267 | /// |
| 268 | /// ``` |
| 269 | /// # use chrono::NaiveDateTime; |
| 270 | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
| 271 | /// let fmt = "%Y-%m-%d %H:%M:%S = UNIX timestamp %s" ; |
| 272 | /// assert!(parse_from_str("2001-09-09 01:46:39 = UNIX timestamp 999999999" , fmt).is_ok()); |
| 273 | /// assert!(parse_from_str("1970-01-01 00:00:00 = UNIX timestamp 1" , fmt).is_err()); |
| 274 | /// ``` |
| 275 | /// |
| 276 | /// Years before 1 BCE or after 9999 CE, require an initial sign |
| 277 | /// |
| 278 | ///``` |
| 279 | /// # use chrono::NaiveDateTime; |
| 280 | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
| 281 | /// let fmt = "%Y-%m-%d %H:%M:%S" ; |
| 282 | /// assert!(parse_from_str("10000-09-09 01:46:39" , fmt).is_err()); |
| 283 | /// assert!(parse_from_str("+10000-09-09 01:46:39" , fmt).is_ok()); |
| 284 | /// ``` |
| 285 | pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime> { |
| 286 | let mut parsed = Parsed::new(); |
| 287 | parse(&mut parsed, s, StrftimeItems::new(fmt))?; |
| 288 | parsed.to_naive_datetime_with_offset(0) // no offset adjustment |
| 289 | } |
| 290 | |
| 291 | /// Parses a string with the specified format string and returns a new `NaiveDateTime`, and a |
| 292 | /// slice with the remaining portion of the string. |
| 293 | /// See the [`format::strftime` module](crate::format::strftime) |
| 294 | /// on the supported escape sequences. |
| 295 | /// |
| 296 | /// Similar to [`parse_from_str`](#method.parse_from_str). |
| 297 | /// |
| 298 | /// # Example |
| 299 | /// |
| 300 | /// ```rust |
| 301 | /// # use chrono::{NaiveDate, NaiveDateTime}; |
| 302 | /// let (datetime, remainder) = NaiveDateTime::parse_and_remainder( |
| 303 | /// "2015-02-18 23:16:09 trailing text" , |
| 304 | /// "%Y-%m-%d %H:%M:%S" , |
| 305 | /// ) |
| 306 | /// .unwrap(); |
| 307 | /// assert_eq!( |
| 308 | /// datetime, |
| 309 | /// NaiveDate::from_ymd_opt(2015, 2, 18).unwrap().and_hms_opt(23, 16, 9).unwrap() |
| 310 | /// ); |
| 311 | /// assert_eq!(remainder, " trailing text" ); |
| 312 | /// ``` |
| 313 | pub fn parse_and_remainder<'a>(s: &'a str, fmt: &str) -> ParseResult<(NaiveDateTime, &'a str)> { |
| 314 | let mut parsed = Parsed::new(); |
| 315 | let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?; |
| 316 | parsed.to_naive_datetime_with_offset(0).map(|d| (d, remainder)) // no offset adjustment |
| 317 | } |
| 318 | |
| 319 | /// Retrieves a date component. |
| 320 | /// |
| 321 | /// # Example |
| 322 | /// |
| 323 | /// ``` |
| 324 | /// use chrono::NaiveDate; |
| 325 | /// |
| 326 | /// let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
| 327 | /// assert_eq!(dt.date(), NaiveDate::from_ymd_opt(2016, 7, 8).unwrap()); |
| 328 | /// ``` |
| 329 | #[inline ] |
| 330 | pub const fn date(&self) -> NaiveDate { |
| 331 | self.date |
| 332 | } |
| 333 | |
| 334 | /// Retrieves a time component. |
| 335 | /// |
| 336 | /// # Example |
| 337 | /// |
| 338 | /// ``` |
| 339 | /// use chrono::{NaiveDate, NaiveTime}; |
| 340 | /// |
| 341 | /// let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
| 342 | /// assert_eq!(dt.time(), NaiveTime::from_hms_opt(9, 10, 11).unwrap()); |
| 343 | /// ``` |
| 344 | #[inline ] |
| 345 | pub const fn time(&self) -> NaiveTime { |
| 346 | self.time |
| 347 | } |
| 348 | |
| 349 | /// Returns the number of non-leap seconds since the midnight on January 1, 1970. |
| 350 | /// |
| 351 | /// Note that this does *not* account for the timezone! |
| 352 | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
| 353 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp()` instead" )] |
| 354 | #[inline ] |
| 355 | #[must_use ] |
| 356 | pub const fn timestamp(&self) -> i64 { |
| 357 | self.and_utc().timestamp() |
| 358 | } |
| 359 | |
| 360 | /// Returns the number of non-leap *milliseconds* since midnight on January 1, 1970. |
| 361 | /// |
| 362 | /// Note that this does *not* account for the timezone! |
| 363 | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
| 364 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp_millis()` instead" )] |
| 365 | #[inline ] |
| 366 | #[must_use ] |
| 367 | pub const fn timestamp_millis(&self) -> i64 { |
| 368 | self.and_utc().timestamp_millis() |
| 369 | } |
| 370 | |
| 371 | /// Returns the number of non-leap *microseconds* since midnight on January 1, 1970. |
| 372 | /// |
| 373 | /// Note that this does *not* account for the timezone! |
| 374 | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
| 375 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp_micros()` instead" )] |
| 376 | #[inline ] |
| 377 | #[must_use ] |
| 378 | pub const fn timestamp_micros(&self) -> i64 { |
| 379 | self.and_utc().timestamp_micros() |
| 380 | } |
| 381 | |
| 382 | /// Returns the number of non-leap *nanoseconds* since midnight on January 1, 1970. |
| 383 | /// |
| 384 | /// Note that this does *not* account for the timezone! |
| 385 | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
| 386 | /// |
| 387 | /// # Panics |
| 388 | /// |
| 389 | /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on |
| 390 | /// an out of range `NaiveDateTime`. |
| 391 | /// |
| 392 | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
| 393 | /// and 2262-04-11T23:47:16.854775807. |
| 394 | #[deprecated (since = "0.4.31" , note = "use `.and_utc().timestamp_nanos_opt()` instead" )] |
| 395 | #[inline ] |
| 396 | #[must_use ] |
| 397 | #[allow (deprecated)] |
| 398 | pub const fn timestamp_nanos(&self) -> i64 { |
| 399 | self.and_utc().timestamp_nanos() |
| 400 | } |
| 401 | |
| 402 | /// Returns the number of non-leap *nanoseconds* since midnight on January 1, 1970. |
| 403 | /// |
| 404 | /// Note that this does *not* account for the timezone! |
| 405 | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
| 406 | /// |
| 407 | /// # Errors |
| 408 | /// |
| 409 | /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns |
| 410 | /// `None` on an out of range `NaiveDateTime`. |
| 411 | /// |
| 412 | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
| 413 | /// and 2262-04-11T23:47:16.854775807. |
| 414 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp_nanos_opt()` instead" )] |
| 415 | #[inline ] |
| 416 | #[must_use ] |
| 417 | pub const fn timestamp_nanos_opt(&self) -> Option<i64> { |
| 418 | self.and_utc().timestamp_nanos_opt() |
| 419 | } |
| 420 | |
| 421 | /// Returns the number of milliseconds since the last whole non-leap second. |
| 422 | /// |
| 423 | /// The return value ranges from 0 to 999, |
| 424 | /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999. |
| 425 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp_subsec_millis()` instead" )] |
| 426 | #[inline ] |
| 427 | #[must_use ] |
| 428 | pub const fn timestamp_subsec_millis(&self) -> u32 { |
| 429 | self.and_utc().timestamp_subsec_millis() |
| 430 | } |
| 431 | |
| 432 | /// Returns the number of microseconds since the last whole non-leap second. |
| 433 | /// |
| 434 | /// The return value ranges from 0 to 999,999, |
| 435 | /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999. |
| 436 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp_subsec_micros()` instead" )] |
| 437 | #[inline ] |
| 438 | #[must_use ] |
| 439 | pub const fn timestamp_subsec_micros(&self) -> u32 { |
| 440 | self.and_utc().timestamp_subsec_micros() |
| 441 | } |
| 442 | |
| 443 | /// Returns the number of nanoseconds since the last whole non-leap second. |
| 444 | /// |
| 445 | /// The return value ranges from 0 to 999,999,999, |
| 446 | /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999,999. |
| 447 | #[deprecated (since = "0.4.36" , note = "use `.and_utc().timestamp_subsec_nanos()` instead" )] |
| 448 | pub const fn timestamp_subsec_nanos(&self) -> u32 { |
| 449 | self.and_utc().timestamp_subsec_nanos() |
| 450 | } |
| 451 | |
| 452 | /// Adds given `TimeDelta` to the current date and time. |
| 453 | /// |
| 454 | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
| 455 | /// the addition assumes that **there is no leap second ever**, |
| 456 | /// except when the `NaiveDateTime` itself represents a leap second |
| 457 | /// in which case the assumption becomes that **there is exactly a single leap second ever**. |
| 458 | /// |
| 459 | /// # Errors |
| 460 | /// |
| 461 | /// Returns `None` if the resulting date would be out of range. |
| 462 | /// |
| 463 | /// # Example |
| 464 | /// |
| 465 | /// ``` |
| 466 | /// use chrono::{NaiveDate, TimeDelta}; |
| 467 | /// |
| 468 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 469 | /// |
| 470 | /// let d = from_ymd(2016, 7, 8); |
| 471 | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
| 472 | /// assert_eq!(hms(3, 5, 7).checked_add_signed(TimeDelta::zero()), Some(hms(3, 5, 7))); |
| 473 | /// assert_eq!( |
| 474 | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(1).unwrap()), |
| 475 | /// Some(hms(3, 5, 8)) |
| 476 | /// ); |
| 477 | /// assert_eq!( |
| 478 | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(-1).unwrap()), |
| 479 | /// Some(hms(3, 5, 6)) |
| 480 | /// ); |
| 481 | /// assert_eq!( |
| 482 | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(3600 + 60).unwrap()), |
| 483 | /// Some(hms(4, 6, 7)) |
| 484 | /// ); |
| 485 | /// assert_eq!( |
| 486 | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(86_400).unwrap()), |
| 487 | /// Some(from_ymd(2016, 7, 9).and_hms_opt(3, 5, 7).unwrap()) |
| 488 | /// ); |
| 489 | /// |
| 490 | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
| 491 | /// assert_eq!( |
| 492 | /// hmsm(3, 5, 7, 980).checked_add_signed(TimeDelta::try_milliseconds(450).unwrap()), |
| 493 | /// Some(hmsm(3, 5, 8, 430)) |
| 494 | /// ); |
| 495 | /// ``` |
| 496 | /// |
| 497 | /// Overflow returns `None`. |
| 498 | /// |
| 499 | /// ``` |
| 500 | /// # use chrono::{TimeDelta, NaiveDate}; |
| 501 | /// # let hms = |h, m, s| NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(h, m, s).unwrap(); |
| 502 | /// assert_eq!(hms(3, 5, 7).checked_add_signed(TimeDelta::try_days(1_000_000_000).unwrap()), None); |
| 503 | /// ``` |
| 504 | /// |
| 505 | /// Leap seconds are handled, |
| 506 | /// but the addition assumes that it is the only leap second happened. |
| 507 | /// |
| 508 | /// ``` |
| 509 | /// # use chrono::{TimeDelta, NaiveDate}; |
| 510 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 511 | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
| 512 | /// let leap = hmsm(3, 5, 59, 1_300); |
| 513 | /// assert_eq!(leap.checked_add_signed(TimeDelta::zero()), |
| 514 | /// Some(hmsm(3, 5, 59, 1_300))); |
| 515 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_milliseconds(-500).unwrap()), |
| 516 | /// Some(hmsm(3, 5, 59, 800))); |
| 517 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_milliseconds(500).unwrap()), |
| 518 | /// Some(hmsm(3, 5, 59, 1_800))); |
| 519 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_milliseconds(800).unwrap()), |
| 520 | /// Some(hmsm(3, 6, 0, 100))); |
| 521 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_seconds(10).unwrap()), |
| 522 | /// Some(hmsm(3, 6, 9, 300))); |
| 523 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_seconds(-10).unwrap()), |
| 524 | /// Some(hmsm(3, 5, 50, 300))); |
| 525 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_days(1).unwrap()), |
| 526 | /// Some(from_ymd(2016, 7, 9).and_hms_milli_opt(3, 5, 59, 300).unwrap())); |
| 527 | /// ``` |
| 528 | #[must_use ] |
| 529 | pub const fn checked_add_signed(self, rhs: TimeDelta) -> Option<NaiveDateTime> { |
| 530 | let (time, remainder) = self.time.overflowing_add_signed(rhs); |
| 531 | let remainder = try_opt!(TimeDelta::try_seconds(remainder)); |
| 532 | let date = try_opt!(self.date.checked_add_signed(remainder)); |
| 533 | Some(NaiveDateTime { date, time }) |
| 534 | } |
| 535 | |
| 536 | /// Adds given `Months` to the current date and time. |
| 537 | /// |
| 538 | /// Uses the last day of the month if the day does not exist in the resulting month. |
| 539 | /// |
| 540 | /// # Errors |
| 541 | /// |
| 542 | /// Returns `None` if the resulting date would be out of range. |
| 543 | /// |
| 544 | /// # Example |
| 545 | /// |
| 546 | /// ``` |
| 547 | /// use chrono::{Months, NaiveDate}; |
| 548 | /// |
| 549 | /// assert_eq!( |
| 550 | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
| 551 | /// .unwrap() |
| 552 | /// .and_hms_opt(1, 0, 0) |
| 553 | /// .unwrap() |
| 554 | /// .checked_add_months(Months::new(1)), |
| 555 | /// Some(NaiveDate::from_ymd_opt(2014, 2, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()) |
| 556 | /// ); |
| 557 | /// |
| 558 | /// assert_eq!( |
| 559 | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
| 560 | /// .unwrap() |
| 561 | /// .and_hms_opt(1, 0, 0) |
| 562 | /// .unwrap() |
| 563 | /// .checked_add_months(Months::new(core::i32::MAX as u32 + 1)), |
| 564 | /// None |
| 565 | /// ); |
| 566 | /// ``` |
| 567 | #[must_use ] |
| 568 | pub const fn checked_add_months(self, rhs: Months) -> Option<NaiveDateTime> { |
| 569 | Some(Self { date: try_opt!(self.date.checked_add_months(rhs)), time: self.time }) |
| 570 | } |
| 571 | |
| 572 | /// Adds given `FixedOffset` to the current datetime. |
| 573 | /// Returns `None` if the result would be outside the valid range for [`NaiveDateTime`]. |
| 574 | /// |
| 575 | /// This method is similar to [`checked_add_signed`](#method.checked_add_offset), but preserves |
| 576 | /// leap seconds. |
| 577 | #[must_use ] |
| 578 | pub const fn checked_add_offset(self, rhs: FixedOffset) -> Option<NaiveDateTime> { |
| 579 | let (time, days) = self.time.overflowing_add_offset(rhs); |
| 580 | let date = match days { |
| 581 | -1 => try_opt!(self.date.pred_opt()), |
| 582 | 1 => try_opt!(self.date.succ_opt()), |
| 583 | _ => self.date, |
| 584 | }; |
| 585 | Some(NaiveDateTime { date, time }) |
| 586 | } |
| 587 | |
| 588 | /// Subtracts given `FixedOffset` from the current datetime. |
| 589 | /// Returns `None` if the result would be outside the valid range for [`NaiveDateTime`]. |
| 590 | /// |
| 591 | /// This method is similar to [`checked_sub_signed`](#method.checked_sub_signed), but preserves |
| 592 | /// leap seconds. |
| 593 | pub const fn checked_sub_offset(self, rhs: FixedOffset) -> Option<NaiveDateTime> { |
| 594 | let (time, days) = self.time.overflowing_sub_offset(rhs); |
| 595 | let date = match days { |
| 596 | -1 => try_opt!(self.date.pred_opt()), |
| 597 | 1 => try_opt!(self.date.succ_opt()), |
| 598 | _ => self.date, |
| 599 | }; |
| 600 | Some(NaiveDateTime { date, time }) |
| 601 | } |
| 602 | |
| 603 | /// Adds given `FixedOffset` to the current datetime. |
| 604 | /// The resulting value may be outside the valid range of [`NaiveDateTime`]. |
| 605 | /// |
| 606 | /// This can be useful for intermediate values, but the resulting out-of-range `NaiveDate` |
| 607 | /// should not be exposed to library users. |
| 608 | #[must_use ] |
| 609 | pub(crate) fn overflowing_add_offset(self, rhs: FixedOffset) -> NaiveDateTime { |
| 610 | let (time, days) = self.time.overflowing_add_offset(rhs); |
| 611 | let date = match days { |
| 612 | -1 => self.date.pred_opt().unwrap_or(NaiveDate::BEFORE_MIN), |
| 613 | 1 => self.date.succ_opt().unwrap_or(NaiveDate::AFTER_MAX), |
| 614 | _ => self.date, |
| 615 | }; |
| 616 | NaiveDateTime { date, time } |
| 617 | } |
| 618 | |
| 619 | /// Subtracts given `FixedOffset` from the current datetime. |
| 620 | /// The resulting value may be outside the valid range of [`NaiveDateTime`]. |
| 621 | /// |
| 622 | /// This can be useful for intermediate values, but the resulting out-of-range `NaiveDate` |
| 623 | /// should not be exposed to library users. |
| 624 | #[must_use ] |
| 625 | #[allow (unused)] // currently only used in `Local` but not on all platforms |
| 626 | pub(crate) fn overflowing_sub_offset(self, rhs: FixedOffset) -> NaiveDateTime { |
| 627 | let (time, days) = self.time.overflowing_sub_offset(rhs); |
| 628 | let date = match days { |
| 629 | -1 => self.date.pred_opt().unwrap_or(NaiveDate::BEFORE_MIN), |
| 630 | 1 => self.date.succ_opt().unwrap_or(NaiveDate::AFTER_MAX), |
| 631 | _ => self.date, |
| 632 | }; |
| 633 | NaiveDateTime { date, time } |
| 634 | } |
| 635 | |
| 636 | /// Subtracts given `TimeDelta` from the current date and time. |
| 637 | /// |
| 638 | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
| 639 | /// the subtraction assumes that **there is no leap second ever**, |
| 640 | /// except when the `NaiveDateTime` itself represents a leap second |
| 641 | /// in which case the assumption becomes that **there is exactly a single leap second ever**. |
| 642 | /// |
| 643 | /// # Errors |
| 644 | /// |
| 645 | /// Returns `None` if the resulting date would be out of range. |
| 646 | /// |
| 647 | /// # Example |
| 648 | /// |
| 649 | /// ``` |
| 650 | /// use chrono::{NaiveDate, TimeDelta}; |
| 651 | /// |
| 652 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 653 | /// |
| 654 | /// let d = from_ymd(2016, 7, 8); |
| 655 | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
| 656 | /// assert_eq!(hms(3, 5, 7).checked_sub_signed(TimeDelta::zero()), Some(hms(3, 5, 7))); |
| 657 | /// assert_eq!( |
| 658 | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(1).unwrap()), |
| 659 | /// Some(hms(3, 5, 6)) |
| 660 | /// ); |
| 661 | /// assert_eq!( |
| 662 | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(-1).unwrap()), |
| 663 | /// Some(hms(3, 5, 8)) |
| 664 | /// ); |
| 665 | /// assert_eq!( |
| 666 | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(3600 + 60).unwrap()), |
| 667 | /// Some(hms(2, 4, 7)) |
| 668 | /// ); |
| 669 | /// assert_eq!( |
| 670 | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(86_400).unwrap()), |
| 671 | /// Some(from_ymd(2016, 7, 7).and_hms_opt(3, 5, 7).unwrap()) |
| 672 | /// ); |
| 673 | /// |
| 674 | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
| 675 | /// assert_eq!( |
| 676 | /// hmsm(3, 5, 7, 450).checked_sub_signed(TimeDelta::try_milliseconds(670).unwrap()), |
| 677 | /// Some(hmsm(3, 5, 6, 780)) |
| 678 | /// ); |
| 679 | /// ``` |
| 680 | /// |
| 681 | /// Overflow returns `None`. |
| 682 | /// |
| 683 | /// ``` |
| 684 | /// # use chrono::{TimeDelta, NaiveDate}; |
| 685 | /// # let hms = |h, m, s| NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(h, m, s).unwrap(); |
| 686 | /// assert_eq!(hms(3, 5, 7).checked_sub_signed(TimeDelta::try_days(1_000_000_000).unwrap()), None); |
| 687 | /// ``` |
| 688 | /// |
| 689 | /// Leap seconds are handled, |
| 690 | /// but the subtraction assumes that it is the only leap second happened. |
| 691 | /// |
| 692 | /// ``` |
| 693 | /// # use chrono::{TimeDelta, NaiveDate}; |
| 694 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 695 | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
| 696 | /// let leap = hmsm(3, 5, 59, 1_300); |
| 697 | /// assert_eq!(leap.checked_sub_signed(TimeDelta::zero()), |
| 698 | /// Some(hmsm(3, 5, 59, 1_300))); |
| 699 | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_milliseconds(200).unwrap()), |
| 700 | /// Some(hmsm(3, 5, 59, 1_100))); |
| 701 | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_milliseconds(500).unwrap()), |
| 702 | /// Some(hmsm(3, 5, 59, 800))); |
| 703 | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_seconds(60).unwrap()), |
| 704 | /// Some(hmsm(3, 5, 0, 300))); |
| 705 | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_days(1).unwrap()), |
| 706 | /// Some(from_ymd(2016, 7, 7).and_hms_milli_opt(3, 6, 0, 300).unwrap())); |
| 707 | /// ``` |
| 708 | #[must_use ] |
| 709 | pub const fn checked_sub_signed(self, rhs: TimeDelta) -> Option<NaiveDateTime> { |
| 710 | let (time, remainder) = self.time.overflowing_sub_signed(rhs); |
| 711 | let remainder = try_opt!(TimeDelta::try_seconds(remainder)); |
| 712 | let date = try_opt!(self.date.checked_sub_signed(remainder)); |
| 713 | Some(NaiveDateTime { date, time }) |
| 714 | } |
| 715 | |
| 716 | /// Subtracts given `Months` from the current date and time. |
| 717 | /// |
| 718 | /// Uses the last day of the month if the day does not exist in the resulting month. |
| 719 | /// |
| 720 | /// # Errors |
| 721 | /// |
| 722 | /// Returns `None` if the resulting date would be out of range. |
| 723 | /// |
| 724 | /// # Example |
| 725 | /// |
| 726 | /// ``` |
| 727 | /// use chrono::{Months, NaiveDate}; |
| 728 | /// |
| 729 | /// assert_eq!( |
| 730 | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
| 731 | /// .unwrap() |
| 732 | /// .and_hms_opt(1, 0, 0) |
| 733 | /// .unwrap() |
| 734 | /// .checked_sub_months(Months::new(1)), |
| 735 | /// Some(NaiveDate::from_ymd_opt(2013, 12, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()) |
| 736 | /// ); |
| 737 | /// |
| 738 | /// assert_eq!( |
| 739 | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
| 740 | /// .unwrap() |
| 741 | /// .and_hms_opt(1, 0, 0) |
| 742 | /// .unwrap() |
| 743 | /// .checked_sub_months(Months::new(core::i32::MAX as u32 + 1)), |
| 744 | /// None |
| 745 | /// ); |
| 746 | /// ``` |
| 747 | #[must_use ] |
| 748 | pub const fn checked_sub_months(self, rhs: Months) -> Option<NaiveDateTime> { |
| 749 | Some(Self { date: try_opt!(self.date.checked_sub_months(rhs)), time: self.time }) |
| 750 | } |
| 751 | |
| 752 | /// Add a duration in [`Days`] to the date part of the `NaiveDateTime` |
| 753 | /// |
| 754 | /// Returns `None` if the resulting date would be out of range. |
| 755 | #[must_use ] |
| 756 | pub const fn checked_add_days(self, days: Days) -> Option<Self> { |
| 757 | Some(Self { date: try_opt!(self.date.checked_add_days(days)), ..self }) |
| 758 | } |
| 759 | |
| 760 | /// Subtract a duration in [`Days`] from the date part of the `NaiveDateTime` |
| 761 | /// |
| 762 | /// Returns `None` if the resulting date would be out of range. |
| 763 | #[must_use ] |
| 764 | pub const fn checked_sub_days(self, days: Days) -> Option<Self> { |
| 765 | Some(Self { date: try_opt!(self.date.checked_sub_days(days)), ..self }) |
| 766 | } |
| 767 | |
| 768 | /// Subtracts another `NaiveDateTime` from the current date and time. |
| 769 | /// This does not overflow or underflow at all. |
| 770 | /// |
| 771 | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
| 772 | /// the subtraction assumes that **there is no leap second ever**, |
| 773 | /// except when any of the `NaiveDateTime`s themselves represents a leap second |
| 774 | /// in which case the assumption becomes that |
| 775 | /// **there are exactly one (or two) leap second(s) ever**. |
| 776 | /// |
| 777 | /// # Example |
| 778 | /// |
| 779 | /// ``` |
| 780 | /// use chrono::{NaiveDate, TimeDelta}; |
| 781 | /// |
| 782 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 783 | /// |
| 784 | /// let d = from_ymd(2016, 7, 8); |
| 785 | /// assert_eq!( |
| 786 | /// d.and_hms_opt(3, 5, 7).unwrap().signed_duration_since(d.and_hms_opt(2, 4, 6).unwrap()), |
| 787 | /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() |
| 788 | /// ); |
| 789 | /// |
| 790 | /// // July 8 is 190th day in the year 2016 |
| 791 | /// let d0 = from_ymd(2016, 1, 1); |
| 792 | /// assert_eq!( |
| 793 | /// d.and_hms_milli_opt(0, 7, 6, 500) |
| 794 | /// .unwrap() |
| 795 | /// .signed_duration_since(d0.and_hms_opt(0, 0, 0).unwrap()), |
| 796 | /// TimeDelta::try_seconds(189 * 86_400 + 7 * 60 + 6).unwrap() |
| 797 | /// + TimeDelta::try_milliseconds(500).unwrap() |
| 798 | /// ); |
| 799 | /// ``` |
| 800 | /// |
| 801 | /// Leap seconds are handled, but the subtraction assumes that |
| 802 | /// there were no other leap seconds happened. |
| 803 | /// |
| 804 | /// ``` |
| 805 | /// # use chrono::{TimeDelta, NaiveDate}; |
| 806 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 807 | /// let leap = from_ymd(2015, 6, 30).and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
| 808 | /// assert_eq!( |
| 809 | /// leap.signed_duration_since(from_ymd(2015, 6, 30).and_hms_opt(23, 0, 0).unwrap()), |
| 810 | /// TimeDelta::try_seconds(3600).unwrap() + TimeDelta::try_milliseconds(500).unwrap() |
| 811 | /// ); |
| 812 | /// assert_eq!( |
| 813 | /// from_ymd(2015, 7, 1).and_hms_opt(1, 0, 0).unwrap().signed_duration_since(leap), |
| 814 | /// TimeDelta::try_seconds(3600).unwrap() - TimeDelta::try_milliseconds(500).unwrap() |
| 815 | /// ); |
| 816 | /// ``` |
| 817 | #[must_use ] |
| 818 | pub const fn signed_duration_since(self, rhs: NaiveDateTime) -> TimeDelta { |
| 819 | expect( |
| 820 | self.date |
| 821 | .signed_duration_since(rhs.date) |
| 822 | .checked_add(&self.time.signed_duration_since(rhs.time)), |
| 823 | "always in range" , |
| 824 | ) |
| 825 | } |
| 826 | |
| 827 | /// Formats the combined date and time with the specified formatting items. |
| 828 | /// Otherwise it is the same as the ordinary [`format`](#method.format) method. |
| 829 | /// |
| 830 | /// The `Iterator` of items should be `Clone`able, |
| 831 | /// since the resulting `DelayedFormat` value may be formatted multiple times. |
| 832 | /// |
| 833 | /// # Example |
| 834 | /// |
| 835 | /// ``` |
| 836 | /// use chrono::format::strftime::StrftimeItems; |
| 837 | /// use chrono::NaiveDate; |
| 838 | /// |
| 839 | /// let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S" ); |
| 840 | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
| 841 | /// assert_eq!(dt.format_with_items(fmt.clone()).to_string(), "2015-09-05 23:56:04" ); |
| 842 | /// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S" ).to_string(), "2015-09-05 23:56:04" ); |
| 843 | /// ``` |
| 844 | /// |
| 845 | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
| 846 | /// |
| 847 | /// ``` |
| 848 | /// # use chrono::NaiveDate; |
| 849 | /// # use chrono::format::strftime::StrftimeItems; |
| 850 | /// # let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S" ).clone(); |
| 851 | /// # let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
| 852 | /// assert_eq!(format!("{}" , dt.format_with_items(fmt)), "2015-09-05 23:56:04" ); |
| 853 | /// ``` |
| 854 | #[cfg (feature = "alloc" )] |
| 855 | #[inline ] |
| 856 | #[must_use ] |
| 857 | pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> |
| 858 | where |
| 859 | I: Iterator<Item = B> + Clone, |
| 860 | B: Borrow<Item<'a>>, |
| 861 | { |
| 862 | DelayedFormat::new(Some(self.date), Some(self.time), items) |
| 863 | } |
| 864 | |
| 865 | /// Formats the combined date and time with the specified format string. |
| 866 | /// See the [`format::strftime` module](crate::format::strftime) |
| 867 | /// on the supported escape sequences. |
| 868 | /// |
| 869 | /// This returns a `DelayedFormat`, |
| 870 | /// which gets converted to a string only when actual formatting happens. |
| 871 | /// You may use the `to_string` method to get a `String`, |
| 872 | /// or just feed it into `print!` and other formatting macros. |
| 873 | /// (In this way it avoids the redundant memory allocation.) |
| 874 | /// |
| 875 | /// A wrong format string does *not* issue an error immediately. |
| 876 | /// Rather, converting or formatting the `DelayedFormat` fails. |
| 877 | /// You are recommended to immediately use `DelayedFormat` for this reason. |
| 878 | /// |
| 879 | /// # Example |
| 880 | /// |
| 881 | /// ``` |
| 882 | /// use chrono::NaiveDate; |
| 883 | /// |
| 884 | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
| 885 | /// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S" ).to_string(), "2015-09-05 23:56:04" ); |
| 886 | /// assert_eq!(dt.format("around %l %p on %b %-d" ).to_string(), "around 11 PM on Sep 5" ); |
| 887 | /// ``` |
| 888 | /// |
| 889 | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
| 890 | /// |
| 891 | /// ``` |
| 892 | /// # use chrono::NaiveDate; |
| 893 | /// # let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
| 894 | /// assert_eq!(format!("{}" , dt.format("%Y-%m-%d %H:%M:%S" )), "2015-09-05 23:56:04" ); |
| 895 | /// assert_eq!(format!("{}" , dt.format("around %l %p on %b %-d" )), "around 11 PM on Sep 5" ); |
| 896 | /// ``` |
| 897 | #[cfg (feature = "alloc" )] |
| 898 | #[inline ] |
| 899 | #[must_use ] |
| 900 | pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> { |
| 901 | self.format_with_items(StrftimeItems::new(fmt)) |
| 902 | } |
| 903 | |
| 904 | /// Converts the `NaiveDateTime` into a timezone-aware `DateTime<Tz>` with the provided |
| 905 | /// time zone. |
| 906 | /// |
| 907 | /// # Example |
| 908 | /// |
| 909 | /// ``` |
| 910 | /// use chrono::{FixedOffset, NaiveDate}; |
| 911 | /// let hour = 3600; |
| 912 | /// let tz = FixedOffset::east_opt(5 * hour).unwrap(); |
| 913 | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 5) |
| 914 | /// .unwrap() |
| 915 | /// .and_hms_opt(23, 56, 4) |
| 916 | /// .unwrap() |
| 917 | /// .and_local_timezone(tz) |
| 918 | /// .unwrap(); |
| 919 | /// assert_eq!(dt.timezone(), tz); |
| 920 | /// ``` |
| 921 | #[must_use ] |
| 922 | pub fn and_local_timezone<Tz: TimeZone>(&self, tz: Tz) -> MappedLocalTime<DateTime<Tz>> { |
| 923 | tz.from_local_datetime(self) |
| 924 | } |
| 925 | |
| 926 | /// Converts the `NaiveDateTime` into the timezone-aware `DateTime<Utc>`. |
| 927 | /// |
| 928 | /// # Example |
| 929 | /// |
| 930 | /// ``` |
| 931 | /// use chrono::{NaiveDate, Utc}; |
| 932 | /// let dt = |
| 933 | /// NaiveDate::from_ymd_opt(2023, 1, 30).unwrap().and_hms_opt(19, 32, 33).unwrap().and_utc(); |
| 934 | /// assert_eq!(dt.timezone(), Utc); |
| 935 | /// ``` |
| 936 | #[must_use ] |
| 937 | pub const fn and_utc(&self) -> DateTime<Utc> { |
| 938 | DateTime::from_naive_utc_and_offset(*self, Utc) |
| 939 | } |
| 940 | |
| 941 | /// The minimum possible `NaiveDateTime`. |
| 942 | pub const MIN: Self = Self { date: NaiveDate::MIN, time: NaiveTime::MIN }; |
| 943 | |
| 944 | /// The maximum possible `NaiveDateTime`. |
| 945 | pub const MAX: Self = Self { date: NaiveDate::MAX, time: NaiveTime::MAX }; |
| 946 | |
| 947 | /// The Unix Epoch, 1970-01-01 00:00:00. |
| 948 | pub const UNIX_EPOCH: Self = |
| 949 | expect(NaiveDate::from_ymd_opt(1970, 1, 1), "" ).and_time(NaiveTime::MIN); |
| 950 | } |
| 951 | |
| 952 | impl From<NaiveDate> for NaiveDateTime { |
| 953 | /// Converts a `NaiveDate` to a `NaiveDateTime` of the same date but at midnight. |
| 954 | /// |
| 955 | /// # Example |
| 956 | /// |
| 957 | /// ``` |
| 958 | /// use chrono::{NaiveDate, NaiveDateTime}; |
| 959 | /// |
| 960 | /// let nd = NaiveDate::from_ymd_opt(2016, 5, 28).unwrap(); |
| 961 | /// let ndt = NaiveDate::from_ymd_opt(2016, 5, 28).unwrap().and_hms_opt(0, 0, 0).unwrap(); |
| 962 | /// assert_eq!(ndt, NaiveDateTime::from(nd)); |
| 963 | fn from(date: NaiveDate) -> Self { |
| 964 | date.and_hms_opt(hour:0, min:0, sec:0).unwrap() |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | impl Datelike for NaiveDateTime { |
| 969 | /// Returns the year number in the [calendar date](./struct.NaiveDate.html#calendar-date). |
| 970 | /// |
| 971 | /// See also the [`NaiveDate::year`](./struct.NaiveDate.html#method.year) method. |
| 972 | /// |
| 973 | /// # Example |
| 974 | /// |
| 975 | /// ``` |
| 976 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 977 | /// |
| 978 | /// let dt: NaiveDateTime = |
| 979 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 980 | /// assert_eq!(dt.year(), 2015); |
| 981 | /// ``` |
| 982 | #[inline ] |
| 983 | fn year(&self) -> i32 { |
| 984 | self.date.year() |
| 985 | } |
| 986 | |
| 987 | /// Returns the month number starting from 1. |
| 988 | /// |
| 989 | /// The return value ranges from 1 to 12. |
| 990 | /// |
| 991 | /// See also the [`NaiveDate::month`](./struct.NaiveDate.html#method.month) method. |
| 992 | /// |
| 993 | /// # Example |
| 994 | /// |
| 995 | /// ``` |
| 996 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 997 | /// |
| 998 | /// let dt: NaiveDateTime = |
| 999 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1000 | /// assert_eq!(dt.month(), 9); |
| 1001 | /// ``` |
| 1002 | #[inline ] |
| 1003 | fn month(&self) -> u32 { |
| 1004 | self.date.month() |
| 1005 | } |
| 1006 | |
| 1007 | /// Returns the month number starting from 0. |
| 1008 | /// |
| 1009 | /// The return value ranges from 0 to 11. |
| 1010 | /// |
| 1011 | /// See also the [`NaiveDate::month0`] method. |
| 1012 | /// |
| 1013 | /// # Example |
| 1014 | /// |
| 1015 | /// ``` |
| 1016 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1017 | /// |
| 1018 | /// let dt: NaiveDateTime = |
| 1019 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1020 | /// assert_eq!(dt.month0(), 8); |
| 1021 | /// ``` |
| 1022 | #[inline ] |
| 1023 | fn month0(&self) -> u32 { |
| 1024 | self.date.month0() |
| 1025 | } |
| 1026 | |
| 1027 | /// Returns the day of month starting from 1. |
| 1028 | /// |
| 1029 | /// The return value ranges from 1 to 31. (The last day of month differs by months.) |
| 1030 | /// |
| 1031 | /// See also the [`NaiveDate::day`](./struct.NaiveDate.html#method.day) method. |
| 1032 | /// |
| 1033 | /// # Example |
| 1034 | /// |
| 1035 | /// ``` |
| 1036 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1037 | /// |
| 1038 | /// let dt: NaiveDateTime = |
| 1039 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1040 | /// assert_eq!(dt.day(), 25); |
| 1041 | /// ``` |
| 1042 | #[inline ] |
| 1043 | fn day(&self) -> u32 { |
| 1044 | self.date.day() |
| 1045 | } |
| 1046 | |
| 1047 | /// Returns the day of month starting from 0. |
| 1048 | /// |
| 1049 | /// The return value ranges from 0 to 30. (The last day of month differs by months.) |
| 1050 | /// |
| 1051 | /// See also the [`NaiveDate::day0`] method. |
| 1052 | /// |
| 1053 | /// # Example |
| 1054 | /// |
| 1055 | /// ``` |
| 1056 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1057 | /// |
| 1058 | /// let dt: NaiveDateTime = |
| 1059 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1060 | /// assert_eq!(dt.day0(), 24); |
| 1061 | /// ``` |
| 1062 | #[inline ] |
| 1063 | fn day0(&self) -> u32 { |
| 1064 | self.date.day0() |
| 1065 | } |
| 1066 | |
| 1067 | /// Returns the day of year starting from 1. |
| 1068 | /// |
| 1069 | /// The return value ranges from 1 to 366. (The last day of year differs by years.) |
| 1070 | /// |
| 1071 | /// See also the [`NaiveDate::ordinal`](./struct.NaiveDate.html#method.ordinal) method. |
| 1072 | /// |
| 1073 | /// # Example |
| 1074 | /// |
| 1075 | /// ``` |
| 1076 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1077 | /// |
| 1078 | /// let dt: NaiveDateTime = |
| 1079 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1080 | /// assert_eq!(dt.ordinal(), 268); |
| 1081 | /// ``` |
| 1082 | #[inline ] |
| 1083 | fn ordinal(&self) -> u32 { |
| 1084 | self.date.ordinal() |
| 1085 | } |
| 1086 | |
| 1087 | /// Returns the day of year starting from 0. |
| 1088 | /// |
| 1089 | /// The return value ranges from 0 to 365. (The last day of year differs by years.) |
| 1090 | /// |
| 1091 | /// See also the [`NaiveDate::ordinal0`] method. |
| 1092 | /// |
| 1093 | /// # Example |
| 1094 | /// |
| 1095 | /// ``` |
| 1096 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1097 | /// |
| 1098 | /// let dt: NaiveDateTime = |
| 1099 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1100 | /// assert_eq!(dt.ordinal0(), 267); |
| 1101 | /// ``` |
| 1102 | #[inline ] |
| 1103 | fn ordinal0(&self) -> u32 { |
| 1104 | self.date.ordinal0() |
| 1105 | } |
| 1106 | |
| 1107 | /// Returns the day of week. |
| 1108 | /// |
| 1109 | /// See also the [`NaiveDate::weekday`](./struct.NaiveDate.html#method.weekday) method. |
| 1110 | /// |
| 1111 | /// # Example |
| 1112 | /// |
| 1113 | /// ``` |
| 1114 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime, Weekday}; |
| 1115 | /// |
| 1116 | /// let dt: NaiveDateTime = |
| 1117 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1118 | /// assert_eq!(dt.weekday(), Weekday::Fri); |
| 1119 | /// ``` |
| 1120 | #[inline ] |
| 1121 | fn weekday(&self) -> Weekday { |
| 1122 | self.date.weekday() |
| 1123 | } |
| 1124 | |
| 1125 | #[inline ] |
| 1126 | fn iso_week(&self) -> IsoWeek { |
| 1127 | self.date.iso_week() |
| 1128 | } |
| 1129 | |
| 1130 | /// Makes a new `NaiveDateTime` with the year number changed, while keeping the same month and |
| 1131 | /// day. |
| 1132 | /// |
| 1133 | /// See also the [`NaiveDate::with_year`] method. |
| 1134 | /// |
| 1135 | /// # Errors |
| 1136 | /// |
| 1137 | /// Returns `None` if: |
| 1138 | /// - The resulting date does not exist (February 29 in a non-leap year). |
| 1139 | /// - The year is out of range for a `NaiveDate`. |
| 1140 | /// |
| 1141 | /// # Example |
| 1142 | /// |
| 1143 | /// ``` |
| 1144 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1145 | /// |
| 1146 | /// let dt: NaiveDateTime = |
| 1147 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1148 | /// assert_eq!( |
| 1149 | /// dt.with_year(2016), |
| 1150 | /// Some(NaiveDate::from_ymd_opt(2016, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1151 | /// ); |
| 1152 | /// assert_eq!( |
| 1153 | /// dt.with_year(-308), |
| 1154 | /// Some(NaiveDate::from_ymd_opt(-308, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1155 | /// ); |
| 1156 | /// ``` |
| 1157 | #[inline ] |
| 1158 | fn with_year(&self, year: i32) -> Option<NaiveDateTime> { |
| 1159 | self.date.with_year(year).map(|d| NaiveDateTime { date: d, ..*self }) |
| 1160 | } |
| 1161 | |
| 1162 | /// Makes a new `NaiveDateTime` with the month number (starting from 1) changed. |
| 1163 | /// |
| 1164 | /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist. |
| 1165 | /// |
| 1166 | /// See also the [`NaiveDate::with_month`] method. |
| 1167 | /// |
| 1168 | /// # Errors |
| 1169 | /// |
| 1170 | /// Returns `None` if: |
| 1171 | /// - The resulting date does not exist (for example `month(4)` when day of the month is 31). |
| 1172 | /// - The value for `month` is invalid. |
| 1173 | /// |
| 1174 | /// # Example |
| 1175 | /// |
| 1176 | /// ``` |
| 1177 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1178 | /// |
| 1179 | /// let dt: NaiveDateTime = |
| 1180 | /// NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1181 | /// assert_eq!( |
| 1182 | /// dt.with_month(10), |
| 1183 | /// Some(NaiveDate::from_ymd_opt(2015, 10, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1184 | /// ); |
| 1185 | /// assert_eq!(dt.with_month(13), None); // No month 13 |
| 1186 | /// assert_eq!(dt.with_month(2), None); // No February 30 |
| 1187 | /// ``` |
| 1188 | #[inline ] |
| 1189 | fn with_month(&self, month: u32) -> Option<NaiveDateTime> { |
| 1190 | self.date.with_month(month).map(|d| NaiveDateTime { date: d, ..*self }) |
| 1191 | } |
| 1192 | |
| 1193 | /// Makes a new `NaiveDateTime` with the month number (starting from 0) changed. |
| 1194 | /// |
| 1195 | /// See also the [`NaiveDate::with_month0`] method. |
| 1196 | /// |
| 1197 | /// # Errors |
| 1198 | /// |
| 1199 | /// Returns `None` if: |
| 1200 | /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31). |
| 1201 | /// - The value for `month0` is invalid. |
| 1202 | /// |
| 1203 | /// # Example |
| 1204 | /// |
| 1205 | /// ``` |
| 1206 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1207 | /// |
| 1208 | /// let dt: NaiveDateTime = |
| 1209 | /// NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1210 | /// assert_eq!( |
| 1211 | /// dt.with_month0(9), |
| 1212 | /// Some(NaiveDate::from_ymd_opt(2015, 10, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1213 | /// ); |
| 1214 | /// assert_eq!(dt.with_month0(12), None); // No month 13 |
| 1215 | /// assert_eq!(dt.with_month0(1), None); // No February 30 |
| 1216 | /// ``` |
| 1217 | #[inline ] |
| 1218 | fn with_month0(&self, month0: u32) -> Option<NaiveDateTime> { |
| 1219 | self.date.with_month0(month0).map(|d| NaiveDateTime { date: d, ..*self }) |
| 1220 | } |
| 1221 | |
| 1222 | /// Makes a new `NaiveDateTime` with the day of month (starting from 1) changed. |
| 1223 | /// |
| 1224 | /// See also the [`NaiveDate::with_day`] method. |
| 1225 | /// |
| 1226 | /// # Errors |
| 1227 | /// |
| 1228 | /// Returns `None` if: |
| 1229 | /// - The resulting date does not exist (for example `day(31)` in April). |
| 1230 | /// - The value for `day` is invalid. |
| 1231 | /// |
| 1232 | /// # Example |
| 1233 | /// |
| 1234 | /// ``` |
| 1235 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1236 | /// |
| 1237 | /// let dt: NaiveDateTime = |
| 1238 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1239 | /// assert_eq!( |
| 1240 | /// dt.with_day(30), |
| 1241 | /// Some(NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1242 | /// ); |
| 1243 | /// assert_eq!(dt.with_day(31), None); // no September 31 |
| 1244 | /// ``` |
| 1245 | #[inline ] |
| 1246 | fn with_day(&self, day: u32) -> Option<NaiveDateTime> { |
| 1247 | self.date.with_day(day).map(|d| NaiveDateTime { date: d, ..*self }) |
| 1248 | } |
| 1249 | |
| 1250 | /// Makes a new `NaiveDateTime` with the day of month (starting from 0) changed. |
| 1251 | /// |
| 1252 | /// See also the [`NaiveDate::with_day0`] method. |
| 1253 | /// |
| 1254 | /// # Errors |
| 1255 | /// |
| 1256 | /// Returns `None` if: |
| 1257 | /// - The resulting date does not exist (for example `day(30)` in April). |
| 1258 | /// - The value for `day0` is invalid. |
| 1259 | /// |
| 1260 | /// # Example |
| 1261 | /// |
| 1262 | /// ``` |
| 1263 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1264 | /// |
| 1265 | /// let dt: NaiveDateTime = |
| 1266 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1267 | /// assert_eq!( |
| 1268 | /// dt.with_day0(29), |
| 1269 | /// Some(NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1270 | /// ); |
| 1271 | /// assert_eq!(dt.with_day0(30), None); // no September 31 |
| 1272 | /// ``` |
| 1273 | #[inline ] |
| 1274 | fn with_day0(&self, day0: u32) -> Option<NaiveDateTime> { |
| 1275 | self.date.with_day0(day0).map(|d| NaiveDateTime { date: d, ..*self }) |
| 1276 | } |
| 1277 | |
| 1278 | /// Makes a new `NaiveDateTime` with the day of year (starting from 1) changed. |
| 1279 | /// |
| 1280 | /// See also the [`NaiveDate::with_ordinal`] method. |
| 1281 | /// |
| 1282 | /// # Errors |
| 1283 | /// |
| 1284 | /// Returns `None` if: |
| 1285 | /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year). |
| 1286 | /// - The value for `ordinal` is invalid. |
| 1287 | /// |
| 1288 | /// # Example |
| 1289 | /// |
| 1290 | /// ``` |
| 1291 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1292 | /// |
| 1293 | /// let dt: NaiveDateTime = |
| 1294 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1295 | /// assert_eq!( |
| 1296 | /// dt.with_ordinal(60), |
| 1297 | /// Some(NaiveDate::from_ymd_opt(2015, 3, 1).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1298 | /// ); |
| 1299 | /// assert_eq!(dt.with_ordinal(366), None); // 2015 had only 365 days |
| 1300 | /// |
| 1301 | /// let dt: NaiveDateTime = |
| 1302 | /// NaiveDate::from_ymd_opt(2016, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1303 | /// assert_eq!( |
| 1304 | /// dt.with_ordinal(60), |
| 1305 | /// Some(NaiveDate::from_ymd_opt(2016, 2, 29).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1306 | /// ); |
| 1307 | /// assert_eq!( |
| 1308 | /// dt.with_ordinal(366), |
| 1309 | /// Some(NaiveDate::from_ymd_opt(2016, 12, 31).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1310 | /// ); |
| 1311 | /// ``` |
| 1312 | #[inline ] |
| 1313 | fn with_ordinal(&self, ordinal: u32) -> Option<NaiveDateTime> { |
| 1314 | self.date.with_ordinal(ordinal).map(|d| NaiveDateTime { date: d, ..*self }) |
| 1315 | } |
| 1316 | |
| 1317 | /// Makes a new `NaiveDateTime` with the day of year (starting from 0) changed. |
| 1318 | /// |
| 1319 | /// See also the [`NaiveDate::with_ordinal0`] method. |
| 1320 | /// |
| 1321 | /// # Errors |
| 1322 | /// |
| 1323 | /// Returns `None` if: |
| 1324 | /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year). |
| 1325 | /// - The value for `ordinal0` is invalid. |
| 1326 | /// |
| 1327 | /// # Example |
| 1328 | /// |
| 1329 | /// ``` |
| 1330 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
| 1331 | /// |
| 1332 | /// let dt: NaiveDateTime = |
| 1333 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1334 | /// assert_eq!( |
| 1335 | /// dt.with_ordinal0(59), |
| 1336 | /// Some(NaiveDate::from_ymd_opt(2015, 3, 1).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1337 | /// ); |
| 1338 | /// assert_eq!(dt.with_ordinal0(365), None); // 2015 had only 365 days |
| 1339 | /// |
| 1340 | /// let dt: NaiveDateTime = |
| 1341 | /// NaiveDate::from_ymd_opt(2016, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
| 1342 | /// assert_eq!( |
| 1343 | /// dt.with_ordinal0(59), |
| 1344 | /// Some(NaiveDate::from_ymd_opt(2016, 2, 29).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1345 | /// ); |
| 1346 | /// assert_eq!( |
| 1347 | /// dt.with_ordinal0(365), |
| 1348 | /// Some(NaiveDate::from_ymd_opt(2016, 12, 31).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
| 1349 | /// ); |
| 1350 | /// ``` |
| 1351 | #[inline ] |
| 1352 | fn with_ordinal0(&self, ordinal0: u32) -> Option<NaiveDateTime> { |
| 1353 | self.date.with_ordinal0(ordinal0).map(|d| NaiveDateTime { date: d, ..*self }) |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | impl Timelike for NaiveDateTime { |
| 1358 | /// Returns the hour number from 0 to 23. |
| 1359 | /// |
| 1360 | /// See also the [`NaiveTime::hour`] method. |
| 1361 | /// |
| 1362 | /// # Example |
| 1363 | /// |
| 1364 | /// ``` |
| 1365 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
| 1366 | /// |
| 1367 | /// let dt: NaiveDateTime = |
| 1368 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
| 1369 | /// assert_eq!(dt.hour(), 12); |
| 1370 | /// ``` |
| 1371 | #[inline ] |
| 1372 | fn hour(&self) -> u32 { |
| 1373 | self.time.hour() |
| 1374 | } |
| 1375 | |
| 1376 | /// Returns the minute number from 0 to 59. |
| 1377 | /// |
| 1378 | /// See also the [`NaiveTime::minute`] method. |
| 1379 | /// |
| 1380 | /// # Example |
| 1381 | /// |
| 1382 | /// ``` |
| 1383 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
| 1384 | /// |
| 1385 | /// let dt: NaiveDateTime = |
| 1386 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
| 1387 | /// assert_eq!(dt.minute(), 34); |
| 1388 | /// ``` |
| 1389 | #[inline ] |
| 1390 | fn minute(&self) -> u32 { |
| 1391 | self.time.minute() |
| 1392 | } |
| 1393 | |
| 1394 | /// Returns the second number from 0 to 59. |
| 1395 | /// |
| 1396 | /// See also the [`NaiveTime::second`] method. |
| 1397 | /// |
| 1398 | /// # Example |
| 1399 | /// |
| 1400 | /// ``` |
| 1401 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
| 1402 | /// |
| 1403 | /// let dt: NaiveDateTime = |
| 1404 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
| 1405 | /// assert_eq!(dt.second(), 56); |
| 1406 | /// ``` |
| 1407 | #[inline ] |
| 1408 | fn second(&self) -> u32 { |
| 1409 | self.time.second() |
| 1410 | } |
| 1411 | |
| 1412 | /// Returns the number of nanoseconds since the whole non-leap second. |
| 1413 | /// The range from 1,000,000,000 to 1,999,999,999 represents |
| 1414 | /// the [leap second](./struct.NaiveTime.html#leap-second-handling). |
| 1415 | /// |
| 1416 | /// See also the [`NaiveTime#method.nanosecond`] method. |
| 1417 | /// |
| 1418 | /// # Example |
| 1419 | /// |
| 1420 | /// ``` |
| 1421 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
| 1422 | /// |
| 1423 | /// let dt: NaiveDateTime = |
| 1424 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
| 1425 | /// assert_eq!(dt.nanosecond(), 789_000_000); |
| 1426 | /// ``` |
| 1427 | #[inline ] |
| 1428 | fn nanosecond(&self) -> u32 { |
| 1429 | self.time.nanosecond() |
| 1430 | } |
| 1431 | |
| 1432 | /// Makes a new `NaiveDateTime` with the hour number changed. |
| 1433 | /// |
| 1434 | /// See also the [`NaiveTime::with_hour`] method. |
| 1435 | /// |
| 1436 | /// # Errors |
| 1437 | /// |
| 1438 | /// Returns `None` if the value for `hour` is invalid. |
| 1439 | /// |
| 1440 | /// # Example |
| 1441 | /// |
| 1442 | /// ``` |
| 1443 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
| 1444 | /// |
| 1445 | /// let dt: NaiveDateTime = |
| 1446 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
| 1447 | /// assert_eq!( |
| 1448 | /// dt.with_hour(7), |
| 1449 | /// Some( |
| 1450 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(7, 34, 56, 789).unwrap() |
| 1451 | /// ) |
| 1452 | /// ); |
| 1453 | /// assert_eq!(dt.with_hour(24), None); |
| 1454 | /// ``` |
| 1455 | #[inline ] |
| 1456 | fn with_hour(&self, hour: u32) -> Option<NaiveDateTime> { |
| 1457 | self.time.with_hour(hour).map(|t| NaiveDateTime { time: t, ..*self }) |
| 1458 | } |
| 1459 | |
| 1460 | /// Makes a new `NaiveDateTime` with the minute number changed. |
| 1461 | /// |
| 1462 | /// See also the [`NaiveTime::with_minute`] method. |
| 1463 | /// |
| 1464 | /// # Errors |
| 1465 | /// |
| 1466 | /// Returns `None` if the value for `minute` is invalid. |
| 1467 | /// |
| 1468 | /// # Example |
| 1469 | /// |
| 1470 | /// ``` |
| 1471 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
| 1472 | /// |
| 1473 | /// let dt: NaiveDateTime = |
| 1474 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
| 1475 | /// assert_eq!( |
| 1476 | /// dt.with_minute(45), |
| 1477 | /// Some( |
| 1478 | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
| 1479 | /// .unwrap() |
| 1480 | /// .and_hms_milli_opt(12, 45, 56, 789) |
| 1481 | /// .unwrap() |
| 1482 | /// ) |
| 1483 | /// ); |
| 1484 | /// assert_eq!(dt.with_minute(60), None); |
| 1485 | /// ``` |
| 1486 | #[inline ] |
| 1487 | fn with_minute(&self, min: u32) -> Option<NaiveDateTime> { |
| 1488 | self.time.with_minute(min).map(|t| NaiveDateTime { time: t, ..*self }) |
| 1489 | } |
| 1490 | |
| 1491 | /// Makes a new `NaiveDateTime` with the second number changed. |
| 1492 | /// |
| 1493 | /// As with the [`second`](#method.second) method, |
| 1494 | /// the input range is restricted to 0 through 59. |
| 1495 | /// |
| 1496 | /// See also the [`NaiveTime::with_second`] method. |
| 1497 | /// |
| 1498 | /// # Errors |
| 1499 | /// |
| 1500 | /// Returns `None` if the value for `second` is invalid. |
| 1501 | /// |
| 1502 | /// # Example |
| 1503 | /// |
| 1504 | /// ``` |
| 1505 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
| 1506 | /// |
| 1507 | /// let dt: NaiveDateTime = |
| 1508 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
| 1509 | /// assert_eq!( |
| 1510 | /// dt.with_second(17), |
| 1511 | /// Some( |
| 1512 | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
| 1513 | /// .unwrap() |
| 1514 | /// .and_hms_milli_opt(12, 34, 17, 789) |
| 1515 | /// .unwrap() |
| 1516 | /// ) |
| 1517 | /// ); |
| 1518 | /// assert_eq!(dt.with_second(60), None); |
| 1519 | /// ``` |
| 1520 | #[inline ] |
| 1521 | fn with_second(&self, sec: u32) -> Option<NaiveDateTime> { |
| 1522 | self.time.with_second(sec).map(|t| NaiveDateTime { time: t, ..*self }) |
| 1523 | } |
| 1524 | |
| 1525 | /// Makes a new `NaiveDateTime` with nanoseconds since the whole non-leap second changed. |
| 1526 | /// |
| 1527 | /// Returns `None` when the resulting `NaiveDateTime` would be invalid. |
| 1528 | /// As with the [`NaiveDateTime::nanosecond`] method, |
| 1529 | /// the input range can exceed 1,000,000,000 for leap seconds. |
| 1530 | /// |
| 1531 | /// See also the [`NaiveTime::with_nanosecond`] method. |
| 1532 | /// |
| 1533 | /// # Errors |
| 1534 | /// |
| 1535 | /// Returns `None` if `nanosecond >= 2,000,000,000`. |
| 1536 | /// |
| 1537 | /// # Example |
| 1538 | /// |
| 1539 | /// ``` |
| 1540 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
| 1541 | /// |
| 1542 | /// let dt: NaiveDateTime = |
| 1543 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 59, 789).unwrap(); |
| 1544 | /// assert_eq!( |
| 1545 | /// dt.with_nanosecond(333_333_333), |
| 1546 | /// Some( |
| 1547 | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
| 1548 | /// .unwrap() |
| 1549 | /// .and_hms_nano_opt(12, 34, 59, 333_333_333) |
| 1550 | /// .unwrap() |
| 1551 | /// ) |
| 1552 | /// ); |
| 1553 | /// assert_eq!( |
| 1554 | /// dt.with_nanosecond(1_333_333_333), // leap second |
| 1555 | /// Some( |
| 1556 | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
| 1557 | /// .unwrap() |
| 1558 | /// .and_hms_nano_opt(12, 34, 59, 1_333_333_333) |
| 1559 | /// .unwrap() |
| 1560 | /// ) |
| 1561 | /// ); |
| 1562 | /// assert_eq!(dt.with_nanosecond(2_000_000_000), None); |
| 1563 | /// ``` |
| 1564 | #[inline ] |
| 1565 | fn with_nanosecond(&self, nano: u32) -> Option<NaiveDateTime> { |
| 1566 | self.time.with_nanosecond(nano).map(|t| NaiveDateTime { time: t, ..*self }) |
| 1567 | } |
| 1568 | } |
| 1569 | |
| 1570 | /// Add `TimeDelta` to `NaiveDateTime`. |
| 1571 | /// |
| 1572 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1573 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1574 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1575 | /// |
| 1576 | /// # Panics |
| 1577 | /// |
| 1578 | /// Panics if the resulting date would be out of range. |
| 1579 | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
| 1580 | /// |
| 1581 | /// # Example |
| 1582 | /// |
| 1583 | /// ``` |
| 1584 | /// use chrono::{NaiveDate, TimeDelta}; |
| 1585 | /// |
| 1586 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 1587 | /// |
| 1588 | /// let d = from_ymd(2016, 7, 8); |
| 1589 | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
| 1590 | /// assert_eq!(hms(3, 5, 7) + TimeDelta::zero(), hms(3, 5, 7)); |
| 1591 | /// assert_eq!(hms(3, 5, 7) + TimeDelta::try_seconds(1).unwrap(), hms(3, 5, 8)); |
| 1592 | /// assert_eq!(hms(3, 5, 7) + TimeDelta::try_seconds(-1).unwrap(), hms(3, 5, 6)); |
| 1593 | /// assert_eq!(hms(3, 5, 7) + TimeDelta::try_seconds(3600 + 60).unwrap(), hms(4, 6, 7)); |
| 1594 | /// assert_eq!( |
| 1595 | /// hms(3, 5, 7) + TimeDelta::try_seconds(86_400).unwrap(), |
| 1596 | /// from_ymd(2016, 7, 9).and_hms_opt(3, 5, 7).unwrap() |
| 1597 | /// ); |
| 1598 | /// assert_eq!( |
| 1599 | /// hms(3, 5, 7) + TimeDelta::try_days(365).unwrap(), |
| 1600 | /// from_ymd(2017, 7, 8).and_hms_opt(3, 5, 7).unwrap() |
| 1601 | /// ); |
| 1602 | /// |
| 1603 | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
| 1604 | /// assert_eq!(hmsm(3, 5, 7, 980) + TimeDelta::try_milliseconds(450).unwrap(), hmsm(3, 5, 8, 430)); |
| 1605 | /// ``` |
| 1606 | /// |
| 1607 | /// Leap seconds are handled, |
| 1608 | /// but the addition assumes that it is the only leap second happened. |
| 1609 | /// |
| 1610 | /// ``` |
| 1611 | /// # use chrono::{TimeDelta, NaiveDate}; |
| 1612 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 1613 | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
| 1614 | /// let leap = hmsm(3, 5, 59, 1_300); |
| 1615 | /// assert_eq!(leap + TimeDelta::zero(), hmsm(3, 5, 59, 1_300)); |
| 1616 | /// assert_eq!(leap + TimeDelta::try_milliseconds(-500).unwrap(), hmsm(3, 5, 59, 800)); |
| 1617 | /// assert_eq!(leap + TimeDelta::try_milliseconds(500).unwrap(), hmsm(3, 5, 59, 1_800)); |
| 1618 | /// assert_eq!(leap + TimeDelta::try_milliseconds(800).unwrap(), hmsm(3, 6, 0, 100)); |
| 1619 | /// assert_eq!(leap + TimeDelta::try_seconds(10).unwrap(), hmsm(3, 6, 9, 300)); |
| 1620 | /// assert_eq!(leap + TimeDelta::try_seconds(-10).unwrap(), hmsm(3, 5, 50, 300)); |
| 1621 | /// assert_eq!(leap + TimeDelta::try_days(1).unwrap(), |
| 1622 | /// from_ymd(2016, 7, 9).and_hms_milli_opt(3, 5, 59, 300).unwrap()); |
| 1623 | /// ``` |
| 1624 | /// |
| 1625 | /// [leap second handling]: crate::NaiveTime#leap-second-handling |
| 1626 | impl Add<TimeDelta> for NaiveDateTime { |
| 1627 | type Output = NaiveDateTime; |
| 1628 | |
| 1629 | #[inline ] |
| 1630 | fn add(self, rhs: TimeDelta) -> NaiveDateTime { |
| 1631 | self.checked_add_signed(rhs).expect(msg:"`NaiveDateTime + TimeDelta` overflowed" ) |
| 1632 | } |
| 1633 | } |
| 1634 | |
| 1635 | /// Add `std::time::Duration` to `NaiveDateTime`. |
| 1636 | /// |
| 1637 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1638 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1639 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1640 | /// |
| 1641 | /// # Panics |
| 1642 | /// |
| 1643 | /// Panics if the resulting date would be out of range. |
| 1644 | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
| 1645 | impl Add<Duration> for NaiveDateTime { |
| 1646 | type Output = NaiveDateTime; |
| 1647 | |
| 1648 | #[inline ] |
| 1649 | fn add(self, rhs: Duration) -> NaiveDateTime { |
| 1650 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
| 1651 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
| 1652 | self.checked_add_signed(rhs).expect(msg:"`NaiveDateTime + TimeDelta` overflowed" ) |
| 1653 | } |
| 1654 | } |
| 1655 | |
| 1656 | /// Add-assign `TimeDelta` to `NaiveDateTime`. |
| 1657 | /// |
| 1658 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1659 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1660 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1661 | /// |
| 1662 | /// # Panics |
| 1663 | /// |
| 1664 | /// Panics if the resulting date would be out of range. |
| 1665 | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
| 1666 | impl AddAssign<TimeDelta> for NaiveDateTime { |
| 1667 | #[inline ] |
| 1668 | fn add_assign(&mut self, rhs: TimeDelta) { |
| 1669 | *self = self.add(rhs); |
| 1670 | } |
| 1671 | } |
| 1672 | |
| 1673 | /// Add-assign `std::time::Duration` to `NaiveDateTime`. |
| 1674 | /// |
| 1675 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1676 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1677 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1678 | /// |
| 1679 | /// # Panics |
| 1680 | /// |
| 1681 | /// Panics if the resulting date would be out of range. |
| 1682 | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
| 1683 | impl AddAssign<Duration> for NaiveDateTime { |
| 1684 | #[inline ] |
| 1685 | fn add_assign(&mut self, rhs: Duration) { |
| 1686 | *self = self.add(rhs); |
| 1687 | } |
| 1688 | } |
| 1689 | |
| 1690 | /// Add `FixedOffset` to `NaiveDateTime`. |
| 1691 | /// |
| 1692 | /// # Panics |
| 1693 | /// |
| 1694 | /// Panics if the resulting date would be out of range. |
| 1695 | /// Consider using `checked_add_offset` to get an `Option` instead. |
| 1696 | impl Add<FixedOffset> for NaiveDateTime { |
| 1697 | type Output = NaiveDateTime; |
| 1698 | |
| 1699 | #[inline ] |
| 1700 | fn add(self, rhs: FixedOffset) -> NaiveDateTime { |
| 1701 | self.checked_add_offset(rhs).expect(msg:"`NaiveDateTime + FixedOffset` out of range" ) |
| 1702 | } |
| 1703 | } |
| 1704 | |
| 1705 | /// Add `Months` to `NaiveDateTime`. |
| 1706 | /// |
| 1707 | /// The result will be clamped to valid days in the resulting month, see `checked_add_months` for |
| 1708 | /// details. |
| 1709 | /// |
| 1710 | /// # Panics |
| 1711 | /// |
| 1712 | /// Panics if the resulting date would be out of range. |
| 1713 | /// Consider using `checked_add_months` to get an `Option` instead. |
| 1714 | /// |
| 1715 | /// # Example |
| 1716 | /// |
| 1717 | /// ``` |
| 1718 | /// use chrono::{Months, NaiveDate}; |
| 1719 | /// |
| 1720 | /// assert_eq!( |
| 1721 | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap() + Months::new(1), |
| 1722 | /// NaiveDate::from_ymd_opt(2014, 2, 1).unwrap().and_hms_opt(1, 0, 0).unwrap() |
| 1723 | /// ); |
| 1724 | /// assert_eq!( |
| 1725 | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 2, 0).unwrap() |
| 1726 | /// + Months::new(11), |
| 1727 | /// NaiveDate::from_ymd_opt(2014, 12, 1).unwrap().and_hms_opt(0, 2, 0).unwrap() |
| 1728 | /// ); |
| 1729 | /// assert_eq!( |
| 1730 | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 0, 3).unwrap() |
| 1731 | /// + Months::new(12), |
| 1732 | /// NaiveDate::from_ymd_opt(2015, 1, 1).unwrap().and_hms_opt(0, 0, 3).unwrap() |
| 1733 | /// ); |
| 1734 | /// assert_eq!( |
| 1735 | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 0, 4).unwrap() |
| 1736 | /// + Months::new(13), |
| 1737 | /// NaiveDate::from_ymd_opt(2015, 2, 1).unwrap().and_hms_opt(0, 0, 4).unwrap() |
| 1738 | /// ); |
| 1739 | /// assert_eq!( |
| 1740 | /// NaiveDate::from_ymd_opt(2014, 1, 31).unwrap().and_hms_opt(0, 5, 0).unwrap() |
| 1741 | /// + Months::new(1), |
| 1742 | /// NaiveDate::from_ymd_opt(2014, 2, 28).unwrap().and_hms_opt(0, 5, 0).unwrap() |
| 1743 | /// ); |
| 1744 | /// assert_eq!( |
| 1745 | /// NaiveDate::from_ymd_opt(2020, 1, 31).unwrap().and_hms_opt(6, 0, 0).unwrap() |
| 1746 | /// + Months::new(1), |
| 1747 | /// NaiveDate::from_ymd_opt(2020, 2, 29).unwrap().and_hms_opt(6, 0, 0).unwrap() |
| 1748 | /// ); |
| 1749 | /// ``` |
| 1750 | impl Add<Months> for NaiveDateTime { |
| 1751 | type Output = NaiveDateTime; |
| 1752 | |
| 1753 | fn add(self, rhs: Months) -> Self::Output { |
| 1754 | self.checked_add_months(rhs).expect(msg:"`NaiveDateTime + Months` out of range" ) |
| 1755 | } |
| 1756 | } |
| 1757 | |
| 1758 | /// Subtract `TimeDelta` from `NaiveDateTime`. |
| 1759 | /// |
| 1760 | /// This is the same as the addition with a negated `TimeDelta`. |
| 1761 | /// |
| 1762 | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
| 1763 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1764 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1765 | /// |
| 1766 | /// # Panics |
| 1767 | /// |
| 1768 | /// Panics if the resulting date would be out of range. |
| 1769 | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
| 1770 | /// |
| 1771 | /// # Example |
| 1772 | /// |
| 1773 | /// ``` |
| 1774 | /// use chrono::{NaiveDate, TimeDelta}; |
| 1775 | /// |
| 1776 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 1777 | /// |
| 1778 | /// let d = from_ymd(2016, 7, 8); |
| 1779 | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
| 1780 | /// assert_eq!(hms(3, 5, 7) - TimeDelta::zero(), hms(3, 5, 7)); |
| 1781 | /// assert_eq!(hms(3, 5, 7) - TimeDelta::try_seconds(1).unwrap(), hms(3, 5, 6)); |
| 1782 | /// assert_eq!(hms(3, 5, 7) - TimeDelta::try_seconds(-1).unwrap(), hms(3, 5, 8)); |
| 1783 | /// assert_eq!(hms(3, 5, 7) - TimeDelta::try_seconds(3600 + 60).unwrap(), hms(2, 4, 7)); |
| 1784 | /// assert_eq!( |
| 1785 | /// hms(3, 5, 7) - TimeDelta::try_seconds(86_400).unwrap(), |
| 1786 | /// from_ymd(2016, 7, 7).and_hms_opt(3, 5, 7).unwrap() |
| 1787 | /// ); |
| 1788 | /// assert_eq!( |
| 1789 | /// hms(3, 5, 7) - TimeDelta::try_days(365).unwrap(), |
| 1790 | /// from_ymd(2015, 7, 9).and_hms_opt(3, 5, 7).unwrap() |
| 1791 | /// ); |
| 1792 | /// |
| 1793 | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
| 1794 | /// assert_eq!(hmsm(3, 5, 7, 450) - TimeDelta::try_milliseconds(670).unwrap(), hmsm(3, 5, 6, 780)); |
| 1795 | /// ``` |
| 1796 | /// |
| 1797 | /// Leap seconds are handled, |
| 1798 | /// but the subtraction assumes that it is the only leap second happened. |
| 1799 | /// |
| 1800 | /// ``` |
| 1801 | /// # use chrono::{TimeDelta, NaiveDate}; |
| 1802 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 1803 | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
| 1804 | /// let leap = hmsm(3, 5, 59, 1_300); |
| 1805 | /// assert_eq!(leap - TimeDelta::zero(), hmsm(3, 5, 59, 1_300)); |
| 1806 | /// assert_eq!(leap - TimeDelta::try_milliseconds(200).unwrap(), hmsm(3, 5, 59, 1_100)); |
| 1807 | /// assert_eq!(leap - TimeDelta::try_milliseconds(500).unwrap(), hmsm(3, 5, 59, 800)); |
| 1808 | /// assert_eq!(leap - TimeDelta::try_seconds(60).unwrap(), hmsm(3, 5, 0, 300)); |
| 1809 | /// assert_eq!(leap - TimeDelta::try_days(1).unwrap(), |
| 1810 | /// from_ymd(2016, 7, 7).and_hms_milli_opt(3, 6, 0, 300).unwrap()); |
| 1811 | /// ``` |
| 1812 | /// |
| 1813 | /// [leap second handling]: crate::NaiveTime#leap-second-handling |
| 1814 | impl Sub<TimeDelta> for NaiveDateTime { |
| 1815 | type Output = NaiveDateTime; |
| 1816 | |
| 1817 | #[inline ] |
| 1818 | fn sub(self, rhs: TimeDelta) -> NaiveDateTime { |
| 1819 | self.checked_sub_signed(rhs).expect(msg:"`NaiveDateTime - TimeDelta` overflowed" ) |
| 1820 | } |
| 1821 | } |
| 1822 | |
| 1823 | /// Subtract `std::time::Duration` from `NaiveDateTime`. |
| 1824 | /// |
| 1825 | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
| 1826 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1827 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1828 | /// |
| 1829 | /// # Panics |
| 1830 | /// |
| 1831 | /// Panics if the resulting date would be out of range. |
| 1832 | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
| 1833 | impl Sub<Duration> for NaiveDateTime { |
| 1834 | type Output = NaiveDateTime; |
| 1835 | |
| 1836 | #[inline ] |
| 1837 | fn sub(self, rhs: Duration) -> NaiveDateTime { |
| 1838 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
| 1839 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
| 1840 | self.checked_sub_signed(rhs).expect(msg:"`NaiveDateTime - TimeDelta` overflowed" ) |
| 1841 | } |
| 1842 | } |
| 1843 | |
| 1844 | /// Subtract-assign `TimeDelta` from `NaiveDateTime`. |
| 1845 | /// |
| 1846 | /// This is the same as the addition with a negated `TimeDelta`. |
| 1847 | /// |
| 1848 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1849 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1850 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1851 | /// |
| 1852 | /// # Panics |
| 1853 | /// |
| 1854 | /// Panics if the resulting date would be out of range. |
| 1855 | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
| 1856 | impl SubAssign<TimeDelta> for NaiveDateTime { |
| 1857 | #[inline ] |
| 1858 | fn sub_assign(&mut self, rhs: TimeDelta) { |
| 1859 | *self = self.sub(rhs); |
| 1860 | } |
| 1861 | } |
| 1862 | |
| 1863 | /// Subtract-assign `std::time::Duration` from `NaiveDateTime`. |
| 1864 | /// |
| 1865 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1866 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1867 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1868 | /// |
| 1869 | /// # Panics |
| 1870 | /// |
| 1871 | /// Panics if the resulting date would be out of range. |
| 1872 | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
| 1873 | impl SubAssign<Duration> for NaiveDateTime { |
| 1874 | #[inline ] |
| 1875 | fn sub_assign(&mut self, rhs: Duration) { |
| 1876 | *self = self.sub(rhs); |
| 1877 | } |
| 1878 | } |
| 1879 | |
| 1880 | /// Subtract `FixedOffset` from `NaiveDateTime`. |
| 1881 | /// |
| 1882 | /// # Panics |
| 1883 | /// |
| 1884 | /// Panics if the resulting date would be out of range. |
| 1885 | /// Consider using `checked_sub_offset` to get an `Option` instead. |
| 1886 | impl Sub<FixedOffset> for NaiveDateTime { |
| 1887 | type Output = NaiveDateTime; |
| 1888 | |
| 1889 | #[inline ] |
| 1890 | fn sub(self, rhs: FixedOffset) -> NaiveDateTime { |
| 1891 | self.checked_sub_offset(rhs).expect(msg:"`NaiveDateTime - FixedOffset` out of range" ) |
| 1892 | } |
| 1893 | } |
| 1894 | |
| 1895 | /// Subtract `Months` from `NaiveDateTime`. |
| 1896 | /// |
| 1897 | /// The result will be clamped to valid days in the resulting month, see |
| 1898 | /// [`NaiveDateTime::checked_sub_months`] for details. |
| 1899 | /// |
| 1900 | /// # Panics |
| 1901 | /// |
| 1902 | /// Panics if the resulting date would be out of range. |
| 1903 | /// Consider using [`NaiveDateTime::checked_sub_months`] to get an `Option` instead. |
| 1904 | /// |
| 1905 | /// # Example |
| 1906 | /// |
| 1907 | /// ``` |
| 1908 | /// use chrono::{Months, NaiveDate}; |
| 1909 | /// |
| 1910 | /// assert_eq!( |
| 1911 | /// NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(01, 00, 00).unwrap() |
| 1912 | /// - Months::new(11), |
| 1913 | /// NaiveDate::from_ymd_opt(2013, 02, 01).unwrap().and_hms_opt(01, 00, 00).unwrap() |
| 1914 | /// ); |
| 1915 | /// assert_eq!( |
| 1916 | /// NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(00, 02, 00).unwrap() |
| 1917 | /// - Months::new(12), |
| 1918 | /// NaiveDate::from_ymd_opt(2013, 01, 01).unwrap().and_hms_opt(00, 02, 00).unwrap() |
| 1919 | /// ); |
| 1920 | /// assert_eq!( |
| 1921 | /// NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(00, 00, 03).unwrap() |
| 1922 | /// - Months::new(13), |
| 1923 | /// NaiveDate::from_ymd_opt(2012, 12, 01).unwrap().and_hms_opt(00, 00, 03).unwrap() |
| 1924 | /// ); |
| 1925 | /// ``` |
| 1926 | impl Sub<Months> for NaiveDateTime { |
| 1927 | type Output = NaiveDateTime; |
| 1928 | |
| 1929 | fn sub(self, rhs: Months) -> Self::Output { |
| 1930 | self.checked_sub_months(rhs).expect(msg:"`NaiveDateTime - Months` out of range" ) |
| 1931 | } |
| 1932 | } |
| 1933 | |
| 1934 | /// Subtracts another `NaiveDateTime` from the current date and time. |
| 1935 | /// This does not overflow or underflow at all. |
| 1936 | /// |
| 1937 | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
| 1938 | /// the subtraction assumes that **there is no leap second ever**, |
| 1939 | /// except when any of the `NaiveDateTime`s themselves represents a leap second |
| 1940 | /// in which case the assumption becomes that |
| 1941 | /// **there are exactly one (or two) leap second(s) ever**. |
| 1942 | /// |
| 1943 | /// The implementation is a wrapper around [`NaiveDateTime::signed_duration_since`]. |
| 1944 | /// |
| 1945 | /// # Example |
| 1946 | /// |
| 1947 | /// ``` |
| 1948 | /// use chrono::{NaiveDate, TimeDelta}; |
| 1949 | /// |
| 1950 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 1951 | /// |
| 1952 | /// let d = from_ymd(2016, 7, 8); |
| 1953 | /// assert_eq!( |
| 1954 | /// d.and_hms_opt(3, 5, 7).unwrap() - d.and_hms_opt(2, 4, 6).unwrap(), |
| 1955 | /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() |
| 1956 | /// ); |
| 1957 | /// |
| 1958 | /// // July 8 is 190th day in the year 2016 |
| 1959 | /// let d0 = from_ymd(2016, 1, 1); |
| 1960 | /// assert_eq!( |
| 1961 | /// d.and_hms_milli_opt(0, 7, 6, 500).unwrap() - d0.and_hms_opt(0, 0, 0).unwrap(), |
| 1962 | /// TimeDelta::try_seconds(189 * 86_400 + 7 * 60 + 6).unwrap() |
| 1963 | /// + TimeDelta::try_milliseconds(500).unwrap() |
| 1964 | /// ); |
| 1965 | /// ``` |
| 1966 | /// |
| 1967 | /// Leap seconds are handled, but the subtraction assumes that no other leap |
| 1968 | /// seconds happened. |
| 1969 | /// |
| 1970 | /// ``` |
| 1971 | /// # use chrono::{TimeDelta, NaiveDate}; |
| 1972 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
| 1973 | /// let leap = from_ymd(2015, 6, 30).and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
| 1974 | /// assert_eq!( |
| 1975 | /// leap - from_ymd(2015, 6, 30).and_hms_opt(23, 0, 0).unwrap(), |
| 1976 | /// TimeDelta::try_seconds(3600).unwrap() + TimeDelta::try_milliseconds(500).unwrap() |
| 1977 | /// ); |
| 1978 | /// assert_eq!( |
| 1979 | /// from_ymd(2015, 7, 1).and_hms_opt(1, 0, 0).unwrap() - leap, |
| 1980 | /// TimeDelta::try_seconds(3600).unwrap() - TimeDelta::try_milliseconds(500).unwrap() |
| 1981 | /// ); |
| 1982 | /// ``` |
| 1983 | impl Sub<NaiveDateTime> for NaiveDateTime { |
| 1984 | type Output = TimeDelta; |
| 1985 | |
| 1986 | #[inline ] |
| 1987 | fn sub(self, rhs: NaiveDateTime) -> TimeDelta { |
| 1988 | self.signed_duration_since(rhs) |
| 1989 | } |
| 1990 | } |
| 1991 | |
| 1992 | /// Add `Days` to `NaiveDateTime`. |
| 1993 | /// |
| 1994 | /// # Panics |
| 1995 | /// |
| 1996 | /// Panics if the resulting date would be out of range. |
| 1997 | /// Consider using `checked_add_days` to get an `Option` instead. |
| 1998 | impl Add<Days> for NaiveDateTime { |
| 1999 | type Output = NaiveDateTime; |
| 2000 | |
| 2001 | fn add(self, days: Days) -> Self::Output { |
| 2002 | self.checked_add_days(days).expect(msg:"`NaiveDateTime + Days` out of range" ) |
| 2003 | } |
| 2004 | } |
| 2005 | |
| 2006 | /// Subtract `Days` from `NaiveDateTime`. |
| 2007 | /// |
| 2008 | /// # Panics |
| 2009 | /// |
| 2010 | /// Panics if the resulting date would be out of range. |
| 2011 | /// Consider using `checked_sub_days` to get an `Option` instead. |
| 2012 | impl Sub<Days> for NaiveDateTime { |
| 2013 | type Output = NaiveDateTime; |
| 2014 | |
| 2015 | fn sub(self, days: Days) -> Self::Output { |
| 2016 | self.checked_sub_days(days).expect(msg:"`NaiveDateTime - Days` out of range" ) |
| 2017 | } |
| 2018 | } |
| 2019 | |
| 2020 | /// The `Debug` output of the naive date and time `dt` is the same as |
| 2021 | /// [`dt.format("%Y-%m-%dT%H:%M:%S%.f")`](crate::format::strftime). |
| 2022 | /// |
| 2023 | /// The string printed can be readily parsed via the `parse` method on `str`. |
| 2024 | /// |
| 2025 | /// It should be noted that, for leap seconds not on the minute boundary, |
| 2026 | /// it may print a representation not distinguishable from non-leap seconds. |
| 2027 | /// This doesn't matter in practice, since such leap seconds never happened. |
| 2028 | /// (By the time of the first leap second on 1972-06-30, |
| 2029 | /// every time zone offset around the world has standardized to the 5-minute alignment.) |
| 2030 | /// |
| 2031 | /// # Example |
| 2032 | /// |
| 2033 | /// ``` |
| 2034 | /// use chrono::NaiveDate; |
| 2035 | /// |
| 2036 | /// let dt = NaiveDate::from_ymd_opt(2016, 11, 15).unwrap().and_hms_opt(7, 39, 24).unwrap(); |
| 2037 | /// assert_eq!(format!("{:?}" , dt), "2016-11-15T07:39:24" ); |
| 2038 | /// ``` |
| 2039 | /// |
| 2040 | /// Leap seconds may also be used. |
| 2041 | /// |
| 2042 | /// ``` |
| 2043 | /// # use chrono::NaiveDate; |
| 2044 | /// let dt = |
| 2045 | /// NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
| 2046 | /// assert_eq!(format!("{:?}" , dt), "2015-06-30T23:59:60.500" ); |
| 2047 | /// ``` |
| 2048 | impl fmt::Debug for NaiveDateTime { |
| 2049 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 2050 | self.date.fmt(f)?; |
| 2051 | f.write_char('T' )?; |
| 2052 | self.time.fmt(f) |
| 2053 | } |
| 2054 | } |
| 2055 | |
| 2056 | /// The `Display` output of the naive date and time `dt` is the same as |
| 2057 | /// [`dt.format("%Y-%m-%d %H:%M:%S%.f")`](crate::format::strftime). |
| 2058 | /// |
| 2059 | /// It should be noted that, for leap seconds not on the minute boundary, |
| 2060 | /// it may print a representation not distinguishable from non-leap seconds. |
| 2061 | /// This doesn't matter in practice, since such leap seconds never happened. |
| 2062 | /// (By the time of the first leap second on 1972-06-30, |
| 2063 | /// every time zone offset around the world has standardized to the 5-minute alignment.) |
| 2064 | /// |
| 2065 | /// # Example |
| 2066 | /// |
| 2067 | /// ``` |
| 2068 | /// use chrono::NaiveDate; |
| 2069 | /// |
| 2070 | /// let dt = NaiveDate::from_ymd_opt(2016, 11, 15).unwrap().and_hms_opt(7, 39, 24).unwrap(); |
| 2071 | /// assert_eq!(format!("{}" , dt), "2016-11-15 07:39:24" ); |
| 2072 | /// ``` |
| 2073 | /// |
| 2074 | /// Leap seconds may also be used. |
| 2075 | /// |
| 2076 | /// ``` |
| 2077 | /// # use chrono::NaiveDate; |
| 2078 | /// let dt = |
| 2079 | /// NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
| 2080 | /// assert_eq!(format!("{}" , dt), "2015-06-30 23:59:60.500" ); |
| 2081 | /// ``` |
| 2082 | impl fmt::Display for NaiveDateTime { |
| 2083 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 2084 | self.date.fmt(f)?; |
| 2085 | f.write_char(' ' )?; |
| 2086 | self.time.fmt(f) |
| 2087 | } |
| 2088 | } |
| 2089 | |
| 2090 | /// Parsing a `str` into a `NaiveDateTime` uses the same format, |
| 2091 | /// [`%Y-%m-%dT%H:%M:%S%.f`](crate::format::strftime), as in `Debug`. |
| 2092 | /// |
| 2093 | /// # Example |
| 2094 | /// |
| 2095 | /// ``` |
| 2096 | /// use chrono::{NaiveDateTime, NaiveDate}; |
| 2097 | /// |
| 2098 | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 18).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
| 2099 | /// assert_eq!("2015-09-18T23:56:04" .parse::<NaiveDateTime>(), Ok(dt)); |
| 2100 | /// |
| 2101 | /// let dt = NaiveDate::from_ymd_opt(12345, 6, 7).unwrap().and_hms_milli_opt(7, 59, 59, 1_500).unwrap(); // leap second |
| 2102 | /// assert_eq!("+12345-6-7T7:59:60.5" .parse::<NaiveDateTime>(), Ok(dt)); |
| 2103 | /// |
| 2104 | /// assert!("foo" .parse::<NaiveDateTime>().is_err()); |
| 2105 | /// ``` |
| 2106 | impl str::FromStr for NaiveDateTime { |
| 2107 | type Err = ParseError; |
| 2108 | |
| 2109 | fn from_str(s: &str) -> ParseResult<NaiveDateTime> { |
| 2110 | const ITEMS: &[Item<'static>] = &[ |
| 2111 | Item::Numeric(Numeric::Year, Pad::Zero), |
| 2112 | Item::Space("" ), |
| 2113 | Item::Literal("-" ), |
| 2114 | Item::Numeric(Numeric::Month, Pad::Zero), |
| 2115 | Item::Space("" ), |
| 2116 | Item::Literal("-" ), |
| 2117 | Item::Numeric(Numeric::Day, Pad::Zero), |
| 2118 | Item::Space("" ), |
| 2119 | Item::Literal("T" ), // XXX shouldn't this be case-insensitive? |
| 2120 | Item::Numeric(Numeric::Hour, Pad::Zero), |
| 2121 | Item::Space("" ), |
| 2122 | Item::Literal(":" ), |
| 2123 | Item::Numeric(Numeric::Minute, Pad::Zero), |
| 2124 | Item::Space("" ), |
| 2125 | Item::Literal(":" ), |
| 2126 | Item::Numeric(Numeric::Second, Pad::Zero), |
| 2127 | Item::Fixed(Fixed::Nanosecond), |
| 2128 | Item::Space("" ), |
| 2129 | ]; |
| 2130 | |
| 2131 | let mut parsed = Parsed::new(); |
| 2132 | parse(&mut parsed, s, ITEMS.iter())?; |
| 2133 | parsed.to_naive_datetime_with_offset(0) |
| 2134 | } |
| 2135 | } |
| 2136 | |
| 2137 | /// The default value for a NaiveDateTime is one with epoch 0 |
| 2138 | /// that is, 1st of January 1970 at 00:00:00. |
| 2139 | /// |
| 2140 | /// # Example |
| 2141 | /// |
| 2142 | /// ```rust |
| 2143 | /// use chrono::NaiveDateTime; |
| 2144 | /// |
| 2145 | /// assert_eq!(NaiveDateTime::default(), NaiveDateTime::UNIX_EPOCH); |
| 2146 | /// ``` |
| 2147 | impl Default for NaiveDateTime { |
| 2148 | fn default() -> Self { |
| 2149 | Self::UNIX_EPOCH |
| 2150 | } |
| 2151 | } |
| 2152 | |