| 1 | use crate::big_digit::{self, BigDigit}; | 
| 2 |  | 
|---|
| 3 | use alloc::string::String; | 
|---|
| 4 | use alloc::vec::Vec; | 
|---|
| 5 | use core::cmp; | 
|---|
| 6 | use core::cmp::Ordering; | 
|---|
| 7 | use core::default::Default; | 
|---|
| 8 | use core::fmt; | 
|---|
| 9 | use core::hash; | 
|---|
| 10 | use core::mem; | 
|---|
| 11 | use core::str; | 
|---|
| 12 |  | 
|---|
| 13 | use num_integer::{Integer, Roots}; | 
|---|
| 14 | use num_traits::{ConstZero, Num, One, Pow, ToPrimitive, Unsigned, Zero}; | 
|---|
| 15 |  | 
|---|
| 16 | mod addition; | 
|---|
| 17 | mod division; | 
|---|
| 18 | mod multiplication; | 
|---|
| 19 | mod subtraction; | 
|---|
| 20 |  | 
|---|
| 21 | mod arbitrary; | 
|---|
| 22 | mod bits; | 
|---|
| 23 | mod convert; | 
|---|
| 24 | mod iter; | 
|---|
| 25 | mod monty; | 
|---|
| 26 | mod power; | 
|---|
| 27 | mod serde; | 
|---|
| 28 | mod shift; | 
|---|
| 29 |  | 
|---|
| 30 | pub(crate) use self::convert::to_str_radix_reversed; | 
|---|
| 31 | pub use self::iter::{U32Digits, U64Digits}; | 
|---|
| 32 |  | 
|---|
| 33 | /// A big unsigned integer type. | 
|---|
| 34 | pub struct BigUint { | 
|---|
| 35 | data: Vec<BigDigit>, | 
|---|
| 36 | } | 
|---|
| 37 |  | 
|---|
| 38 | // Note: derived `Clone` doesn't specialize `clone_from`, | 
|---|
| 39 | // but we want to keep the allocation in `data`. | 
|---|
| 40 | impl Clone for BigUint { | 
|---|
| 41 | #[ inline] | 
|---|
| 42 | fn clone(&self) -> Self { | 
|---|
| 43 | BigUint { | 
|---|
| 44 | data: self.data.clone(), | 
|---|
| 45 | } | 
|---|
| 46 | } | 
|---|
| 47 |  | 
|---|
| 48 | #[ inline] | 
|---|
| 49 | fn clone_from(&mut self, other: &Self) { | 
|---|
| 50 | self.data.clone_from(&other.data); | 
|---|
| 51 | } | 
|---|
| 52 | } | 
|---|
| 53 |  | 
|---|
| 54 | impl hash::Hash for BigUint { | 
|---|
| 55 | #[ inline] | 
|---|
| 56 | fn hash<H: hash::Hasher>(&self, state: &mut H) { | 
|---|
| 57 | debug_assert!(self.data.last() != Some(&0)); | 
|---|
| 58 | self.data.hash(state); | 
|---|
| 59 | } | 
|---|
| 60 | } | 
|---|
| 61 |  | 
|---|
| 62 | impl PartialEq for BigUint { | 
|---|
| 63 | #[ inline] | 
|---|
| 64 | fn eq(&self, other: &BigUint) -> bool { | 
|---|
| 65 | debug_assert!(self.data.last() != Some(&0)); | 
|---|
| 66 | debug_assert!(other.data.last() != Some(&0)); | 
|---|
| 67 | self.data == other.data | 
|---|
| 68 | } | 
|---|
| 69 | } | 
|---|
| 70 | impl Eq for BigUint {} | 
|---|
| 71 |  | 
|---|
| 72 | impl PartialOrd for BigUint { | 
|---|
| 73 | #[ inline] | 
|---|
| 74 | fn partial_cmp(&self, other: &BigUint) -> Option<Ordering> { | 
|---|
| 75 | Some(self.cmp(other)) | 
|---|
| 76 | } | 
|---|
| 77 | } | 
|---|
| 78 |  | 
|---|
| 79 | impl Ord for BigUint { | 
|---|
| 80 | #[ inline] | 
|---|
| 81 | fn cmp(&self, other: &BigUint) -> Ordering { | 
|---|
| 82 | cmp_slice(&self.data[..], &other.data[..]) | 
|---|
| 83 | } | 
|---|
| 84 | } | 
|---|
| 85 |  | 
|---|
| 86 | #[ inline] | 
|---|
| 87 | fn cmp_slice(a: &[BigDigit], b: &[BigDigit]) -> Ordering { | 
|---|
| 88 | debug_assert!(a.last() != Some(&0)); | 
|---|
| 89 | debug_assert!(b.last() != Some(&0)); | 
|---|
| 90 |  | 
|---|
| 91 | match Ord::cmp(&a.len(), &b.len()) { | 
|---|
| 92 | Ordering::Equal => Iterator::cmp(self:a.iter().rev(), other:b.iter().rev()), | 
|---|
| 93 | other: Ordering => other, | 
|---|
| 94 | } | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | impl Default for BigUint { | 
|---|
| 98 | #[ inline] | 
|---|
| 99 | fn default() -> BigUint { | 
|---|
| 100 | Self::ZERO | 
|---|
| 101 | } | 
|---|
| 102 | } | 
|---|
| 103 |  | 
|---|
| 104 | impl fmt::Debug for BigUint { | 
|---|
| 105 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|---|
| 106 | fmt::Display::fmt(self, f) | 
|---|
| 107 | } | 
|---|
| 108 | } | 
|---|
| 109 |  | 
|---|
| 110 | impl fmt::Display for BigUint { | 
|---|
| 111 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|---|
| 112 | f.pad_integral(is_nonnegative:true, prefix: "", &self.to_str_radix(10)) | 
|---|
| 113 | } | 
|---|
| 114 | } | 
|---|
| 115 |  | 
|---|
| 116 | impl fmt::LowerHex for BigUint { | 
|---|
| 117 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|---|
| 118 | f.pad_integral(is_nonnegative:true, prefix: "0x", &self.to_str_radix(16)) | 
|---|
| 119 | } | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 | impl fmt::UpperHex for BigUint { | 
|---|
| 123 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|---|
| 124 | let mut s: String = self.to_str_radix(16); | 
|---|
| 125 | s.make_ascii_uppercase(); | 
|---|
| 126 | f.pad_integral(is_nonnegative:true, prefix: "0x", &s) | 
|---|
| 127 | } | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 | impl fmt::Binary for BigUint { | 
|---|
| 131 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|---|
| 132 | f.pad_integral(is_nonnegative:true, prefix: "0b", &self.to_str_radix(2)) | 
|---|
| 133 | } | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | impl fmt::Octal for BigUint { | 
|---|
| 137 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|---|
| 138 | f.pad_integral(is_nonnegative:true, prefix: "0o", &self.to_str_radix(8)) | 
|---|
| 139 | } | 
|---|
| 140 | } | 
|---|
| 141 |  | 
|---|
| 142 | impl Zero for BigUint { | 
|---|
| 143 | #[ inline] | 
|---|
| 144 | fn zero() -> BigUint { | 
|---|
| 145 | Self::ZERO | 
|---|
| 146 | } | 
|---|
| 147 |  | 
|---|
| 148 | #[ inline] | 
|---|
| 149 | fn set_zero(&mut self) { | 
|---|
| 150 | self.data.clear(); | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 | #[ inline] | 
|---|
| 154 | fn is_zero(&self) -> bool { | 
|---|
| 155 | self.data.is_empty() | 
|---|
| 156 | } | 
|---|
| 157 | } | 
|---|
| 158 |  | 
|---|
| 159 | impl ConstZero for BigUint { | 
|---|
| 160 | // forward to the inherent const | 
|---|
| 161 | const ZERO: Self = Self::ZERO; // BigUint { data: Vec::new() }; | 
|---|
| 162 | } | 
|---|
| 163 |  | 
|---|
| 164 | impl One for BigUint { | 
|---|
| 165 | #[ inline] | 
|---|
| 166 | fn one() -> BigUint { | 
|---|
| 167 | BigUint { data: vec![1] } | 
|---|
| 168 | } | 
|---|
| 169 |  | 
|---|
| 170 | #[ inline] | 
|---|
| 171 | fn set_one(&mut self) { | 
|---|
| 172 | self.data.clear(); | 
|---|
| 173 | self.data.push(1); | 
|---|
| 174 | } | 
|---|
| 175 |  | 
|---|
| 176 | #[ inline] | 
|---|
| 177 | fn is_one(&self) -> bool { | 
|---|
| 178 | self.data[..] == [1] | 
|---|
| 179 | } | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | impl Unsigned for BigUint {} | 
|---|
| 183 |  | 
|---|
| 184 | impl Integer for BigUint { | 
|---|
| 185 | #[ inline] | 
|---|
| 186 | fn div_rem(&self, other: &BigUint) -> (BigUint, BigUint) { | 
|---|
| 187 | division::div_rem_ref(self, other) | 
|---|
| 188 | } | 
|---|
| 189 |  | 
|---|
| 190 | #[ inline] | 
|---|
| 191 | fn div_floor(&self, other: &BigUint) -> BigUint { | 
|---|
| 192 | let (d, _) = division::div_rem_ref(self, other); | 
|---|
| 193 | d | 
|---|
| 194 | } | 
|---|
| 195 |  | 
|---|
| 196 | #[ inline] | 
|---|
| 197 | fn mod_floor(&self, other: &BigUint) -> BigUint { | 
|---|
| 198 | let (_, m) = division::div_rem_ref(self, other); | 
|---|
| 199 | m | 
|---|
| 200 | } | 
|---|
| 201 |  | 
|---|
| 202 | #[ inline] | 
|---|
| 203 | fn div_mod_floor(&self, other: &BigUint) -> (BigUint, BigUint) { | 
|---|
| 204 | division::div_rem_ref(self, other) | 
|---|
| 205 | } | 
|---|
| 206 |  | 
|---|
| 207 | #[ inline] | 
|---|
| 208 | fn div_ceil(&self, other: &BigUint) -> BigUint { | 
|---|
| 209 | let (d, m) = division::div_rem_ref(self, other); | 
|---|
| 210 | if m.is_zero() { | 
|---|
| 211 | d | 
|---|
| 212 | } else { | 
|---|
| 213 | d + 1u32 | 
|---|
| 214 | } | 
|---|
| 215 | } | 
|---|
| 216 |  | 
|---|
| 217 | /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. | 
|---|
| 218 | /// | 
|---|
| 219 | /// The result is always positive. | 
|---|
| 220 | #[ inline] | 
|---|
| 221 | fn gcd(&self, other: &Self) -> Self { | 
|---|
| 222 | #[ inline] | 
|---|
| 223 | fn twos(x: &BigUint) -> u64 { | 
|---|
| 224 | x.trailing_zeros().unwrap_or(0) | 
|---|
| 225 | } | 
|---|
| 226 |  | 
|---|
| 227 | // Stein's algorithm | 
|---|
| 228 | if self.is_zero() { | 
|---|
| 229 | return other.clone(); | 
|---|
| 230 | } | 
|---|
| 231 | if other.is_zero() { | 
|---|
| 232 | return self.clone(); | 
|---|
| 233 | } | 
|---|
| 234 | let mut m = self.clone(); | 
|---|
| 235 | let mut n = other.clone(); | 
|---|
| 236 |  | 
|---|
| 237 | // find common factors of 2 | 
|---|
| 238 | let shift = cmp::min(twos(&n), twos(&m)); | 
|---|
| 239 |  | 
|---|
| 240 | // divide m and n by 2 until odd | 
|---|
| 241 | // m inside loop | 
|---|
| 242 | n >>= twos(&n); | 
|---|
| 243 |  | 
|---|
| 244 | while !m.is_zero() { | 
|---|
| 245 | m >>= twos(&m); | 
|---|
| 246 | if n > m { | 
|---|
| 247 | mem::swap(&mut n, &mut m) | 
|---|
| 248 | } | 
|---|
| 249 | m -= &n; | 
|---|
| 250 | } | 
|---|
| 251 |  | 
|---|
| 252 | n << shift | 
|---|
| 253 | } | 
|---|
| 254 |  | 
|---|
| 255 | /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. | 
|---|
| 256 | #[ inline] | 
|---|
| 257 | fn lcm(&self, other: &BigUint) -> BigUint { | 
|---|
| 258 | if self.is_zero() && other.is_zero() { | 
|---|
| 259 | Self::ZERO | 
|---|
| 260 | } else { | 
|---|
| 261 | self / self.gcd(other) * other | 
|---|
| 262 | } | 
|---|
| 263 | } | 
|---|
| 264 |  | 
|---|
| 265 | /// Calculates the Greatest Common Divisor (GCD) and | 
|---|
| 266 | /// Lowest Common Multiple (LCM) together. | 
|---|
| 267 | #[ inline] | 
|---|
| 268 | fn gcd_lcm(&self, other: &Self) -> (Self, Self) { | 
|---|
| 269 | let gcd = self.gcd(other); | 
|---|
| 270 | let lcm = if gcd.is_zero() { | 
|---|
| 271 | Self::ZERO | 
|---|
| 272 | } else { | 
|---|
| 273 | self / &gcd * other | 
|---|
| 274 | }; | 
|---|
| 275 | (gcd, lcm) | 
|---|
| 276 | } | 
|---|
| 277 |  | 
|---|
| 278 | /// Deprecated, use `is_multiple_of` instead. | 
|---|
| 279 | #[ inline] | 
|---|
| 280 | fn divides(&self, other: &BigUint) -> bool { | 
|---|
| 281 | self.is_multiple_of(other) | 
|---|
| 282 | } | 
|---|
| 283 |  | 
|---|
| 284 | /// Returns `true` if the number is a multiple of `other`. | 
|---|
| 285 | #[ inline] | 
|---|
| 286 | fn is_multiple_of(&self, other: &BigUint) -> bool { | 
|---|
| 287 | if other.is_zero() { | 
|---|
| 288 | return self.is_zero(); | 
|---|
| 289 | } | 
|---|
| 290 | (self % other).is_zero() | 
|---|
| 291 | } | 
|---|
| 292 |  | 
|---|
| 293 | /// Returns `true` if the number is divisible by `2`. | 
|---|
| 294 | #[ inline] | 
|---|
| 295 | fn is_even(&self) -> bool { | 
|---|
| 296 | // Considering only the last digit. | 
|---|
| 297 | match self.data.first() { | 
|---|
| 298 | Some(x) => x.is_even(), | 
|---|
| 299 | None => true, | 
|---|
| 300 | } | 
|---|
| 301 | } | 
|---|
| 302 |  | 
|---|
| 303 | /// Returns `true` if the number is not divisible by `2`. | 
|---|
| 304 | #[ inline] | 
|---|
| 305 | fn is_odd(&self) -> bool { | 
|---|
| 306 | !self.is_even() | 
|---|
| 307 | } | 
|---|
| 308 |  | 
|---|
| 309 | /// Rounds up to nearest multiple of argument. | 
|---|
| 310 | #[ inline] | 
|---|
| 311 | fn next_multiple_of(&self, other: &Self) -> Self { | 
|---|
| 312 | let m = self.mod_floor(other); | 
|---|
| 313 | if m.is_zero() { | 
|---|
| 314 | self.clone() | 
|---|
| 315 | } else { | 
|---|
| 316 | self + (other - m) | 
|---|
| 317 | } | 
|---|
| 318 | } | 
|---|
| 319 | /// Rounds down to nearest multiple of argument. | 
|---|
| 320 | #[ inline] | 
|---|
| 321 | fn prev_multiple_of(&self, other: &Self) -> Self { | 
|---|
| 322 | self - self.mod_floor(other) | 
|---|
| 323 | } | 
|---|
| 324 |  | 
|---|
| 325 | fn dec(&mut self) { | 
|---|
| 326 | *self -= 1u32; | 
|---|
| 327 | } | 
|---|
| 328 |  | 
|---|
| 329 | fn inc(&mut self) { | 
|---|
| 330 | *self += 1u32; | 
|---|
| 331 | } | 
|---|
| 332 | } | 
|---|
| 333 |  | 
|---|
| 334 | #[ inline] | 
|---|
| 335 | fn fixpoint<F>(mut x: BigUint, max_bits: u64, f: F) -> BigUint | 
|---|
| 336 | where | 
|---|
| 337 | F: Fn(&BigUint) -> BigUint, | 
|---|
| 338 | { | 
|---|
| 339 | let mut xn: BigUint = f(&x); | 
|---|
| 340 |  | 
|---|
| 341 | // If the value increased, then the initial guess must have been low. | 
|---|
| 342 | // Repeat until we reverse course. | 
|---|
| 343 | while x < xn { | 
|---|
| 344 | // Sometimes an increase will go way too far, especially with large | 
|---|
| 345 | // powers, and then take a long time to walk back.  We know an upper | 
|---|
| 346 | // bound based on bit size, so saturate on that. | 
|---|
| 347 | x = if xn.bits() > max_bits { | 
|---|
| 348 | BigUint::one() << max_bits | 
|---|
| 349 | } else { | 
|---|
| 350 | xn | 
|---|
| 351 | }; | 
|---|
| 352 | xn = f(&x); | 
|---|
| 353 | } | 
|---|
| 354 |  | 
|---|
| 355 | // Now keep repeating while the estimate is decreasing. | 
|---|
| 356 | while x > xn { | 
|---|
| 357 | x = xn; | 
|---|
| 358 | xn = f(&x); | 
|---|
| 359 | } | 
|---|
| 360 | x | 
|---|
| 361 | } | 
|---|
| 362 |  | 
|---|
| 363 | impl Roots for BigUint { | 
|---|
| 364 | // nth_root, sqrt and cbrt use Newton's method to compute | 
|---|
| 365 | // principal root of a given degree for a given integer. | 
|---|
| 366 |  | 
|---|
| 367 | // Reference: | 
|---|
| 368 | // Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.14 | 
|---|
| 369 | fn nth_root(&self, n: u32) -> Self { | 
|---|
| 370 | assert!(n > 0, "root degree n must be at least 1"); | 
|---|
| 371 |  | 
|---|
| 372 | if self.is_zero() || self.is_one() { | 
|---|
| 373 | return self.clone(); | 
|---|
| 374 | } | 
|---|
| 375 |  | 
|---|
| 376 | match n { | 
|---|
| 377 | // Optimize for small n | 
|---|
| 378 | 1 => return self.clone(), | 
|---|
| 379 | 2 => return self.sqrt(), | 
|---|
| 380 | 3 => return self.cbrt(), | 
|---|
| 381 | _ => (), | 
|---|
| 382 | } | 
|---|
| 383 |  | 
|---|
| 384 | // The root of non-zero values less than 2ⁿ can only be 1. | 
|---|
| 385 | let bits = self.bits(); | 
|---|
| 386 | let n64 = u64::from(n); | 
|---|
| 387 | if bits <= n64 { | 
|---|
| 388 | return BigUint::one(); | 
|---|
| 389 | } | 
|---|
| 390 |  | 
|---|
| 391 | // If we fit in `u64`, compute the root that way. | 
|---|
| 392 | if let Some(x) = self.to_u64() { | 
|---|
| 393 | return x.nth_root(n).into(); | 
|---|
| 394 | } | 
|---|
| 395 |  | 
|---|
| 396 | let max_bits = bits / n64 + 1; | 
|---|
| 397 |  | 
|---|
| 398 | #[ cfg(feature = "std")] | 
|---|
| 399 | let guess = match self.to_f64() { | 
|---|
| 400 | Some(f) if f.is_finite() => { | 
|---|
| 401 | use num_traits::FromPrimitive; | 
|---|
| 402 |  | 
|---|
| 403 | // We fit in `f64` (lossy), so get a better initial guess from that. | 
|---|
| 404 | BigUint::from_f64((f.ln() / f64::from(n)).exp()).unwrap() | 
|---|
| 405 | } | 
|---|
| 406 | _ => { | 
|---|
| 407 | // Try to guess by scaling down such that it does fit in `f64`. | 
|---|
| 408 | // With some (x * 2ⁿᵏ), its nth root ≈ (ⁿ√x * 2ᵏ) | 
|---|
| 409 | let extra_bits = bits - (f64::MAX_EXP as u64 - 1); | 
|---|
| 410 | let root_scale = Integer::div_ceil(&extra_bits, &n64); | 
|---|
| 411 | let scale = root_scale * n64; | 
|---|
| 412 | if scale < bits && bits - scale > n64 { | 
|---|
| 413 | (self >> scale).nth_root(n) << root_scale | 
|---|
| 414 | } else { | 
|---|
| 415 | BigUint::one() << max_bits | 
|---|
| 416 | } | 
|---|
| 417 | } | 
|---|
| 418 | }; | 
|---|
| 419 |  | 
|---|
| 420 | #[ cfg(not(feature = "std"))] | 
|---|
| 421 | let guess = BigUint::one() << max_bits; | 
|---|
| 422 |  | 
|---|
| 423 | let n_min_1 = n - 1; | 
|---|
| 424 | fixpoint(guess, max_bits, move |s| { | 
|---|
| 425 | let q = self / s.pow(n_min_1); | 
|---|
| 426 | let t = n_min_1 * s + q; | 
|---|
| 427 | t / n | 
|---|
| 428 | }) | 
|---|
| 429 | } | 
|---|
| 430 |  | 
|---|
| 431 | // Reference: | 
|---|
| 432 | // Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.13 | 
|---|
| 433 | fn sqrt(&self) -> Self { | 
|---|
| 434 | if self.is_zero() || self.is_one() { | 
|---|
| 435 | return self.clone(); | 
|---|
| 436 | } | 
|---|
| 437 |  | 
|---|
| 438 | // If we fit in `u64`, compute the root that way. | 
|---|
| 439 | if let Some(x) = self.to_u64() { | 
|---|
| 440 | return x.sqrt().into(); | 
|---|
| 441 | } | 
|---|
| 442 |  | 
|---|
| 443 | let bits = self.bits(); | 
|---|
| 444 | let max_bits = bits / 2 + 1; | 
|---|
| 445 |  | 
|---|
| 446 | #[ cfg(feature = "std")] | 
|---|
| 447 | let guess = match self.to_f64() { | 
|---|
| 448 | Some(f) if f.is_finite() => { | 
|---|
| 449 | use num_traits::FromPrimitive; | 
|---|
| 450 |  | 
|---|
| 451 | // We fit in `f64` (lossy), so get a better initial guess from that. | 
|---|
| 452 | BigUint::from_f64(f.sqrt()).unwrap() | 
|---|
| 453 | } | 
|---|
| 454 | _ => { | 
|---|
| 455 | // Try to guess by scaling down such that it does fit in `f64`. | 
|---|
| 456 | // With some (x * 2²ᵏ), its sqrt ≈ (√x * 2ᵏ) | 
|---|
| 457 | let extra_bits = bits - (f64::MAX_EXP as u64 - 1); | 
|---|
| 458 | let root_scale = (extra_bits + 1) / 2; | 
|---|
| 459 | let scale = root_scale * 2; | 
|---|
| 460 | (self >> scale).sqrt() << root_scale | 
|---|
| 461 | } | 
|---|
| 462 | }; | 
|---|
| 463 |  | 
|---|
| 464 | #[ cfg(not(feature = "std"))] | 
|---|
| 465 | let guess = BigUint::one() << max_bits; | 
|---|
| 466 |  | 
|---|
| 467 | fixpoint(guess, max_bits, move |s| { | 
|---|
| 468 | let q = self / s; | 
|---|
| 469 | let t = s + q; | 
|---|
| 470 | t >> 1 | 
|---|
| 471 | }) | 
|---|
| 472 | } | 
|---|
| 473 |  | 
|---|
| 474 | fn cbrt(&self) -> Self { | 
|---|
| 475 | if self.is_zero() || self.is_one() { | 
|---|
| 476 | return self.clone(); | 
|---|
| 477 | } | 
|---|
| 478 |  | 
|---|
| 479 | // If we fit in `u64`, compute the root that way. | 
|---|
| 480 | if let Some(x) = self.to_u64() { | 
|---|
| 481 | return x.cbrt().into(); | 
|---|
| 482 | } | 
|---|
| 483 |  | 
|---|
| 484 | let bits = self.bits(); | 
|---|
| 485 | let max_bits = bits / 3 + 1; | 
|---|
| 486 |  | 
|---|
| 487 | #[ cfg(feature = "std")] | 
|---|
| 488 | let guess = match self.to_f64() { | 
|---|
| 489 | Some(f) if f.is_finite() => { | 
|---|
| 490 | use num_traits::FromPrimitive; | 
|---|
| 491 |  | 
|---|
| 492 | // We fit in `f64` (lossy), so get a better initial guess from that. | 
|---|
| 493 | BigUint::from_f64(f.cbrt()).unwrap() | 
|---|
| 494 | } | 
|---|
| 495 | _ => { | 
|---|
| 496 | // Try to guess by scaling down such that it does fit in `f64`. | 
|---|
| 497 | // With some (x * 2³ᵏ), its cbrt ≈ (∛x * 2ᵏ) | 
|---|
| 498 | let extra_bits = bits - (f64::MAX_EXP as u64 - 1); | 
|---|
| 499 | let root_scale = (extra_bits + 2) / 3; | 
|---|
| 500 | let scale = root_scale * 3; | 
|---|
| 501 | (self >> scale).cbrt() << root_scale | 
|---|
| 502 | } | 
|---|
| 503 | }; | 
|---|
| 504 |  | 
|---|
| 505 | #[ cfg(not(feature = "std"))] | 
|---|
| 506 | let guess = BigUint::one() << max_bits; | 
|---|
| 507 |  | 
|---|
| 508 | fixpoint(guess, max_bits, move |s| { | 
|---|
| 509 | let q = self / (s * s); | 
|---|
| 510 | let t = (s << 1) + q; | 
|---|
| 511 | t / 3u32 | 
|---|
| 512 | }) | 
|---|
| 513 | } | 
|---|
| 514 | } | 
|---|
| 515 |  | 
|---|
| 516 | /// A generic trait for converting a value to a [`BigUint`]. | 
|---|
| 517 | pub trait ToBigUint { | 
|---|
| 518 | /// Converts the value of `self` to a [`BigUint`]. | 
|---|
| 519 | fn to_biguint(&self) -> Option<BigUint>; | 
|---|
| 520 | } | 
|---|
| 521 |  | 
|---|
| 522 | /// Creates and initializes a [`BigUint`]. | 
|---|
| 523 | /// | 
|---|
| 524 | /// The digits are in little-endian base matching `BigDigit`. | 
|---|
| 525 | #[ inline] | 
|---|
| 526 | pub(crate) fn biguint_from_vec(digits: Vec<BigDigit>) -> BigUint { | 
|---|
| 527 | BigUint { data: digits }.normalized() | 
|---|
| 528 | } | 
|---|
| 529 |  | 
|---|
| 530 | impl BigUint { | 
|---|
| 531 | /// A constant `BigUint` with value 0, useful for static initialization. | 
|---|
| 532 | pub const ZERO: Self = BigUint { data: Vec::new() }; | 
|---|
| 533 |  | 
|---|
| 534 | /// Creates and initializes a [`BigUint`]. | 
|---|
| 535 | /// | 
|---|
| 536 | /// The base 2<sup>32</sup> digits are ordered least significant digit first. | 
|---|
| 537 | #[ inline] | 
|---|
| 538 | pub fn new(digits: Vec<u32>) -> BigUint { | 
|---|
| 539 | let mut big = Self::ZERO; | 
|---|
| 540 |  | 
|---|
| 541 | cfg_digit_expr!( | 
|---|
| 542 | { | 
|---|
| 543 | big.data = digits; | 
|---|
| 544 | big.normalize(); | 
|---|
| 545 | }, | 
|---|
| 546 | big.assign_from_slice(&digits) | 
|---|
| 547 | ); | 
|---|
| 548 |  | 
|---|
| 549 | big | 
|---|
| 550 | } | 
|---|
| 551 |  | 
|---|
| 552 | /// Creates and initializes a [`BigUint`]. | 
|---|
| 553 | /// | 
|---|
| 554 | /// The base 2<sup>32</sup> digits are ordered least significant digit first. | 
|---|
| 555 | #[ inline] | 
|---|
| 556 | pub fn from_slice(slice: &[u32]) -> BigUint { | 
|---|
| 557 | let mut big = Self::ZERO; | 
|---|
| 558 | big.assign_from_slice(slice); | 
|---|
| 559 | big | 
|---|
| 560 | } | 
|---|
| 561 |  | 
|---|
| 562 | /// Assign a value to a [`BigUint`]. | 
|---|
| 563 | /// | 
|---|
| 564 | /// The base 2<sup>32</sup> digits are ordered least significant digit first. | 
|---|
| 565 | #[ inline] | 
|---|
| 566 | pub fn assign_from_slice(&mut self, slice: &[u32]) { | 
|---|
| 567 | self.data.clear(); | 
|---|
| 568 |  | 
|---|
| 569 | cfg_digit_expr!( | 
|---|
| 570 | self.data.extend_from_slice(slice), | 
|---|
| 571 | self.data.extend(slice.chunks(2).map(u32_chunk_to_u64)) | 
|---|
| 572 | ); | 
|---|
| 573 |  | 
|---|
| 574 | self.normalize(); | 
|---|
| 575 | } | 
|---|
| 576 |  | 
|---|
| 577 | /// Creates and initializes a [`BigUint`]. | 
|---|
| 578 | /// | 
|---|
| 579 | /// The bytes are in big-endian byte order. | 
|---|
| 580 | /// | 
|---|
| 581 | /// # Examples | 
|---|
| 582 | /// | 
|---|
| 583 | /// ``` | 
|---|
| 584 | /// use num_bigint::BigUint; | 
|---|
| 585 | /// | 
|---|
| 586 | /// assert_eq!(BigUint::from_bytes_be( b"A"), | 
|---|
| 587 | ///            BigUint::parse_bytes( b"65", 10).unwrap()); | 
|---|
| 588 | /// assert_eq!(BigUint::from_bytes_be( b"AA"), | 
|---|
| 589 | ///            BigUint::parse_bytes( b"16705", 10).unwrap()); | 
|---|
| 590 | /// assert_eq!(BigUint::from_bytes_be( b"AB"), | 
|---|
| 591 | ///            BigUint::parse_bytes( b"16706", 10).unwrap()); | 
|---|
| 592 | /// assert_eq!(BigUint::from_bytes_be( b"Hello world!"), | 
|---|
| 593 | ///            BigUint::parse_bytes( b"22405534230753963835153736737", 10).unwrap()); | 
|---|
| 594 | /// ``` | 
|---|
| 595 | #[ inline] | 
|---|
| 596 | pub fn from_bytes_be(bytes: &[u8]) -> BigUint { | 
|---|
| 597 | if bytes.is_empty() { | 
|---|
| 598 | Self::ZERO | 
|---|
| 599 | } else { | 
|---|
| 600 | let mut v = bytes.to_vec(); | 
|---|
| 601 | v.reverse(); | 
|---|
| 602 | BigUint::from_bytes_le(&v) | 
|---|
| 603 | } | 
|---|
| 604 | } | 
|---|
| 605 |  | 
|---|
| 606 | /// Creates and initializes a [`BigUint`]. | 
|---|
| 607 | /// | 
|---|
| 608 | /// The bytes are in little-endian byte order. | 
|---|
| 609 | #[ inline] | 
|---|
| 610 | pub fn from_bytes_le(bytes: &[u8]) -> BigUint { | 
|---|
| 611 | if bytes.is_empty() { | 
|---|
| 612 | Self::ZERO | 
|---|
| 613 | } else { | 
|---|
| 614 | convert::from_bitwise_digits_le(bytes, 8) | 
|---|
| 615 | } | 
|---|
| 616 | } | 
|---|
| 617 |  | 
|---|
| 618 | /// Creates and initializes a [`BigUint`]. The input slice must contain | 
|---|
| 619 | /// ascii/utf8 characters in [0-9a-zA-Z]. | 
|---|
| 620 | /// `radix` must be in the range `2...36`. | 
|---|
| 621 | /// | 
|---|
| 622 | /// The function `from_str_radix` from the `Num` trait provides the same logic | 
|---|
| 623 | /// for `&str` buffers. | 
|---|
| 624 | /// | 
|---|
| 625 | /// # Examples | 
|---|
| 626 | /// | 
|---|
| 627 | /// ``` | 
|---|
| 628 | /// use num_bigint::{BigUint, ToBigUint}; | 
|---|
| 629 | /// | 
|---|
| 630 | /// assert_eq!(BigUint::parse_bytes( b"1234", 10), ToBigUint::to_biguint(&1234)); | 
|---|
| 631 | /// assert_eq!(BigUint::parse_bytes( b"ABCD", 16), ToBigUint::to_biguint(&0xABCD)); | 
|---|
| 632 | /// assert_eq!(BigUint::parse_bytes( b"G", 16), None); | 
|---|
| 633 | /// ``` | 
|---|
| 634 | #[ inline] | 
|---|
| 635 | pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigUint> { | 
|---|
| 636 | let s = str::from_utf8(buf).ok()?; | 
|---|
| 637 | BigUint::from_str_radix(s, radix).ok() | 
|---|
| 638 | } | 
|---|
| 639 |  | 
|---|
| 640 | /// Creates and initializes a [`BigUint`]. Each `u8` of the input slice is | 
|---|
| 641 | /// interpreted as one digit of the number | 
|---|
| 642 | /// and must therefore be less than `radix`. | 
|---|
| 643 | /// | 
|---|
| 644 | /// The bytes are in big-endian byte order. | 
|---|
| 645 | /// `radix` must be in the range `2...256`. | 
|---|
| 646 | /// | 
|---|
| 647 | /// # Examples | 
|---|
| 648 | /// | 
|---|
| 649 | /// ``` | 
|---|
| 650 | /// use num_bigint::{BigUint}; | 
|---|
| 651 | /// | 
|---|
| 652 | /// let inbase190 = &[15, 33, 125, 12, 14]; | 
|---|
| 653 | /// let a = BigUint::from_radix_be(inbase190, 190).unwrap(); | 
|---|
| 654 | /// assert_eq!(a.to_radix_be(190), inbase190); | 
|---|
| 655 | /// ``` | 
|---|
| 656 | pub fn from_radix_be(buf: &[u8], radix: u32) -> Option<BigUint> { | 
|---|
| 657 | convert::from_radix_be(buf, radix) | 
|---|
| 658 | } | 
|---|
| 659 |  | 
|---|
| 660 | /// Creates and initializes a [`BigUint`]. Each `u8` of the input slice is | 
|---|
| 661 | /// interpreted as one digit of the number | 
|---|
| 662 | /// and must therefore be less than `radix`. | 
|---|
| 663 | /// | 
|---|
| 664 | /// The bytes are in little-endian byte order. | 
|---|
| 665 | /// `radix` must be in the range `2...256`. | 
|---|
| 666 | /// | 
|---|
| 667 | /// # Examples | 
|---|
| 668 | /// | 
|---|
| 669 | /// ``` | 
|---|
| 670 | /// use num_bigint::{BigUint}; | 
|---|
| 671 | /// | 
|---|
| 672 | /// let inbase190 = &[14, 12, 125, 33, 15]; | 
|---|
| 673 | /// let a = BigUint::from_radix_be(inbase190, 190).unwrap(); | 
|---|
| 674 | /// assert_eq!(a.to_radix_be(190), inbase190); | 
|---|
| 675 | /// ``` | 
|---|
| 676 | pub fn from_radix_le(buf: &[u8], radix: u32) -> Option<BigUint> { | 
|---|
| 677 | convert::from_radix_le(buf, radix) | 
|---|
| 678 | } | 
|---|
| 679 |  | 
|---|
| 680 | /// Returns the byte representation of the [`BigUint`] in big-endian byte order. | 
|---|
| 681 | /// | 
|---|
| 682 | /// # Examples | 
|---|
| 683 | /// | 
|---|
| 684 | /// ``` | 
|---|
| 685 | /// use num_bigint::BigUint; | 
|---|
| 686 | /// | 
|---|
| 687 | /// let i = BigUint::parse_bytes( b"1125", 10).unwrap(); | 
|---|
| 688 | /// assert_eq!(i.to_bytes_be(), vec![4, 101]); | 
|---|
| 689 | /// ``` | 
|---|
| 690 | #[ inline] | 
|---|
| 691 | pub fn to_bytes_be(&self) -> Vec<u8> { | 
|---|
| 692 | let mut v = self.to_bytes_le(); | 
|---|
| 693 | v.reverse(); | 
|---|
| 694 | v | 
|---|
| 695 | } | 
|---|
| 696 |  | 
|---|
| 697 | /// Returns the byte representation of the [`BigUint`] in little-endian byte order. | 
|---|
| 698 | /// | 
|---|
| 699 | /// # Examples | 
|---|
| 700 | /// | 
|---|
| 701 | /// ``` | 
|---|
| 702 | /// use num_bigint::BigUint; | 
|---|
| 703 | /// | 
|---|
| 704 | /// let i = BigUint::parse_bytes( b"1125", 10).unwrap(); | 
|---|
| 705 | /// assert_eq!(i.to_bytes_le(), vec![101, 4]); | 
|---|
| 706 | /// ``` | 
|---|
| 707 | #[ inline] | 
|---|
| 708 | pub fn to_bytes_le(&self) -> Vec<u8> { | 
|---|
| 709 | if self.is_zero() { | 
|---|
| 710 | vec![0] | 
|---|
| 711 | } else { | 
|---|
| 712 | convert::to_bitwise_digits_le(self, 8) | 
|---|
| 713 | } | 
|---|
| 714 | } | 
|---|
| 715 |  | 
|---|
| 716 | /// Returns the `u32` digits representation of the [`BigUint`] ordered least significant digit | 
|---|
| 717 | /// first. | 
|---|
| 718 | /// | 
|---|
| 719 | /// # Examples | 
|---|
| 720 | /// | 
|---|
| 721 | /// ``` | 
|---|
| 722 | /// use num_bigint::BigUint; | 
|---|
| 723 | /// | 
|---|
| 724 | /// assert_eq!(BigUint::from(1125u32).to_u32_digits(), vec![1125]); | 
|---|
| 725 | /// assert_eq!(BigUint::from(4294967295u32).to_u32_digits(), vec![4294967295]); | 
|---|
| 726 | /// assert_eq!(BigUint::from(4294967296u64).to_u32_digits(), vec![0, 1]); | 
|---|
| 727 | /// assert_eq!(BigUint::from(112500000000u64).to_u32_digits(), vec![830850304, 26]); | 
|---|
| 728 | /// ``` | 
|---|
| 729 | #[ inline] | 
|---|
| 730 | pub fn to_u32_digits(&self) -> Vec<u32> { | 
|---|
| 731 | self.iter_u32_digits().collect() | 
|---|
| 732 | } | 
|---|
| 733 |  | 
|---|
| 734 | /// Returns the `u64` digits representation of the [`BigUint`] ordered least significant digit | 
|---|
| 735 | /// first. | 
|---|
| 736 | /// | 
|---|
| 737 | /// # Examples | 
|---|
| 738 | /// | 
|---|
| 739 | /// ``` | 
|---|
| 740 | /// use num_bigint::BigUint; | 
|---|
| 741 | /// | 
|---|
| 742 | /// assert_eq!(BigUint::from(1125u32).to_u64_digits(), vec![1125]); | 
|---|
| 743 | /// assert_eq!(BigUint::from(4294967295u32).to_u64_digits(), vec![4294967295]); | 
|---|
| 744 | /// assert_eq!(BigUint::from(4294967296u64).to_u64_digits(), vec![4294967296]); | 
|---|
| 745 | /// assert_eq!(BigUint::from(112500000000u64).to_u64_digits(), vec![112500000000]); | 
|---|
| 746 | /// assert_eq!(BigUint::from(1u128 << 64).to_u64_digits(), vec![0, 1]); | 
|---|
| 747 | /// ``` | 
|---|
| 748 | #[ inline] | 
|---|
| 749 | pub fn to_u64_digits(&self) -> Vec<u64> { | 
|---|
| 750 | self.iter_u64_digits().collect() | 
|---|
| 751 | } | 
|---|
| 752 |  | 
|---|
| 753 | /// Returns an iterator of `u32` digits representation of the [`BigUint`] ordered least | 
|---|
| 754 | /// significant digit first. | 
|---|
| 755 | /// | 
|---|
| 756 | /// # Examples | 
|---|
| 757 | /// | 
|---|
| 758 | /// ``` | 
|---|
| 759 | /// use num_bigint::BigUint; | 
|---|
| 760 | /// | 
|---|
| 761 | /// assert_eq!(BigUint::from(1125u32).iter_u32_digits().collect::<Vec<u32>>(), vec![1125]); | 
|---|
| 762 | /// assert_eq!(BigUint::from(4294967295u32).iter_u32_digits().collect::<Vec<u32>>(), vec![4294967295]); | 
|---|
| 763 | /// assert_eq!(BigUint::from(4294967296u64).iter_u32_digits().collect::<Vec<u32>>(), vec![0, 1]); | 
|---|
| 764 | /// assert_eq!(BigUint::from(112500000000u64).iter_u32_digits().collect::<Vec<u32>>(), vec![830850304, 26]); | 
|---|
| 765 | /// ``` | 
|---|
| 766 | #[ inline] | 
|---|
| 767 | pub fn iter_u32_digits(&self) -> U32Digits<'_> { | 
|---|
| 768 | U32Digits::new(self.data.as_slice()) | 
|---|
| 769 | } | 
|---|
| 770 |  | 
|---|
| 771 | /// Returns an iterator of `u64` digits representation of the [`BigUint`] ordered least | 
|---|
| 772 | /// significant digit first. | 
|---|
| 773 | /// | 
|---|
| 774 | /// # Examples | 
|---|
| 775 | /// | 
|---|
| 776 | /// ``` | 
|---|
| 777 | /// use num_bigint::BigUint; | 
|---|
| 778 | /// | 
|---|
| 779 | /// assert_eq!(BigUint::from(1125u32).iter_u64_digits().collect::<Vec<u64>>(), vec![1125]); | 
|---|
| 780 | /// assert_eq!(BigUint::from(4294967295u32).iter_u64_digits().collect::<Vec<u64>>(), vec![4294967295]); | 
|---|
| 781 | /// assert_eq!(BigUint::from(4294967296u64).iter_u64_digits().collect::<Vec<u64>>(), vec![4294967296]); | 
|---|
| 782 | /// assert_eq!(BigUint::from(112500000000u64).iter_u64_digits().collect::<Vec<u64>>(), vec![112500000000]); | 
|---|
| 783 | /// assert_eq!(BigUint::from(1u128 << 64).iter_u64_digits().collect::<Vec<u64>>(), vec![0, 1]); | 
|---|
| 784 | /// ``` | 
|---|
| 785 | #[ inline] | 
|---|
| 786 | pub fn iter_u64_digits(&self) -> U64Digits<'_> { | 
|---|
| 787 | U64Digits::new(self.data.as_slice()) | 
|---|
| 788 | } | 
|---|
| 789 |  | 
|---|
| 790 | /// Returns the integer formatted as a string in the given radix. | 
|---|
| 791 | /// `radix` must be in the range `2...36`. | 
|---|
| 792 | /// | 
|---|
| 793 | /// # Examples | 
|---|
| 794 | /// | 
|---|
| 795 | /// ``` | 
|---|
| 796 | /// use num_bigint::BigUint; | 
|---|
| 797 | /// | 
|---|
| 798 | /// let i = BigUint::parse_bytes( b"ff", 16).unwrap(); | 
|---|
| 799 | /// assert_eq!(i.to_str_radix(16), "ff"); | 
|---|
| 800 | /// ``` | 
|---|
| 801 | #[ inline] | 
|---|
| 802 | pub fn to_str_radix(&self, radix: u32) -> String { | 
|---|
| 803 | let mut v = to_str_radix_reversed(self, radix); | 
|---|
| 804 | v.reverse(); | 
|---|
| 805 | unsafe { String::from_utf8_unchecked(v) } | 
|---|
| 806 | } | 
|---|
| 807 |  | 
|---|
| 808 | /// Returns the integer in the requested base in big-endian digit order. | 
|---|
| 809 | /// The output is not given in a human readable alphabet but as a zero | 
|---|
| 810 | /// based `u8` number. | 
|---|
| 811 | /// `radix` must be in the range `2...256`. | 
|---|
| 812 | /// | 
|---|
| 813 | /// # Examples | 
|---|
| 814 | /// | 
|---|
| 815 | /// ``` | 
|---|
| 816 | /// use num_bigint::BigUint; | 
|---|
| 817 | /// | 
|---|
| 818 | /// assert_eq!(BigUint::from(0xFFFFu64).to_radix_be(159), | 
|---|
| 819 | ///            vec![2, 94, 27]); | 
|---|
| 820 | /// // 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27 | 
|---|
| 821 | /// ``` | 
|---|
| 822 | #[ inline] | 
|---|
| 823 | pub fn to_radix_be(&self, radix: u32) -> Vec<u8> { | 
|---|
| 824 | let mut v = convert::to_radix_le(self, radix); | 
|---|
| 825 | v.reverse(); | 
|---|
| 826 | v | 
|---|
| 827 | } | 
|---|
| 828 |  | 
|---|
| 829 | /// Returns the integer in the requested base in little-endian digit order. | 
|---|
| 830 | /// The output is not given in a human readable alphabet but as a zero | 
|---|
| 831 | /// based u8 number. | 
|---|
| 832 | /// `radix` must be in the range `2...256`. | 
|---|
| 833 | /// | 
|---|
| 834 | /// # Examples | 
|---|
| 835 | /// | 
|---|
| 836 | /// ``` | 
|---|
| 837 | /// use num_bigint::BigUint; | 
|---|
| 838 | /// | 
|---|
| 839 | /// assert_eq!(BigUint::from(0xFFFFu64).to_radix_le(159), | 
|---|
| 840 | ///            vec![27, 94, 2]); | 
|---|
| 841 | /// // 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2) | 
|---|
| 842 | /// ``` | 
|---|
| 843 | #[ inline] | 
|---|
| 844 | pub fn to_radix_le(&self, radix: u32) -> Vec<u8> { | 
|---|
| 845 | convert::to_radix_le(self, radix) | 
|---|
| 846 | } | 
|---|
| 847 |  | 
|---|
| 848 | /// Determines the fewest bits necessary to express the [`BigUint`]. | 
|---|
| 849 | #[ inline] | 
|---|
| 850 | pub fn bits(&self) -> u64 { | 
|---|
| 851 | if self.is_zero() { | 
|---|
| 852 | return 0; | 
|---|
| 853 | } | 
|---|
| 854 | let zeros: u64 = self.data.last().unwrap().leading_zeros().into(); | 
|---|
| 855 | self.data.len() as u64 * u64::from(big_digit::BITS) - zeros | 
|---|
| 856 | } | 
|---|
| 857 |  | 
|---|
| 858 | /// Strips off trailing zero bigdigits - comparisons require the last element in the vector to | 
|---|
| 859 | /// be nonzero. | 
|---|
| 860 | #[ inline] | 
|---|
| 861 | fn normalize(&mut self) { | 
|---|
| 862 | if let Some(&0) = self.data.last() { | 
|---|
| 863 | let len = self.data.iter().rposition(|&d| d != 0).map_or(0, |i| i + 1); | 
|---|
| 864 | self.data.truncate(len); | 
|---|
| 865 | } | 
|---|
| 866 | if self.data.len() < self.data.capacity() / 4 { | 
|---|
| 867 | self.data.shrink_to_fit(); | 
|---|
| 868 | } | 
|---|
| 869 | } | 
|---|
| 870 |  | 
|---|
| 871 | /// Returns a normalized [`BigUint`]. | 
|---|
| 872 | #[ inline] | 
|---|
| 873 | fn normalized(mut self) -> BigUint { | 
|---|
| 874 | self.normalize(); | 
|---|
| 875 | self | 
|---|
| 876 | } | 
|---|
| 877 |  | 
|---|
| 878 | /// Returns `self ^ exponent`. | 
|---|
| 879 | pub fn pow(&self, exponent: u32) -> Self { | 
|---|
| 880 | Pow::pow(self, exponent) | 
|---|
| 881 | } | 
|---|
| 882 |  | 
|---|
| 883 | /// Returns `(self ^ exponent) % modulus`. | 
|---|
| 884 | /// | 
|---|
| 885 | /// Panics if the modulus is zero. | 
|---|
| 886 | pub fn modpow(&self, exponent: &Self, modulus: &Self) -> Self { | 
|---|
| 887 | power::modpow(self, exponent, modulus) | 
|---|
| 888 | } | 
|---|
| 889 |  | 
|---|
| 890 | /// Returns the modular multiplicative inverse if it exists, otherwise `None`. | 
|---|
| 891 | /// | 
|---|
| 892 | /// This solves for `x` in the interval `[0, modulus)` such that `self * x ≡ 1 (mod modulus)`. | 
|---|
| 893 | /// The solution exists if and only if `gcd(self, modulus) == 1`. | 
|---|
| 894 | /// | 
|---|
| 895 | /// ``` | 
|---|
| 896 | /// use num_bigint::BigUint; | 
|---|
| 897 | /// use num_traits::{One, Zero}; | 
|---|
| 898 | /// | 
|---|
| 899 | /// let m = BigUint::from(383_u32); | 
|---|
| 900 | /// | 
|---|
| 901 | /// // Trivial cases | 
|---|
| 902 | /// assert_eq!(BigUint::zero().modinv(&m), None); | 
|---|
| 903 | /// assert_eq!(BigUint::one().modinv(&m), Some(BigUint::one())); | 
|---|
| 904 | /// let neg1 = &m - 1u32; | 
|---|
| 905 | /// assert_eq!(neg1.modinv(&m), Some(neg1)); | 
|---|
| 906 | /// | 
|---|
| 907 | /// let a = BigUint::from(271_u32); | 
|---|
| 908 | /// let x = a.modinv(&m).unwrap(); | 
|---|
| 909 | /// assert_eq!(x, BigUint::from(106_u32)); | 
|---|
| 910 | /// assert_eq!(x.modinv(&m).unwrap(), a); | 
|---|
| 911 | /// assert!((a * x % m).is_one()); | 
|---|
| 912 | /// ``` | 
|---|
| 913 | pub fn modinv(&self, modulus: &Self) -> Option<Self> { | 
|---|
| 914 | // Based on the inverse pseudocode listed here: | 
|---|
| 915 | // https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers | 
|---|
| 916 | // TODO: consider Binary or Lehmer's GCD algorithms for optimization. | 
|---|
| 917 |  | 
|---|
| 918 | assert!( | 
|---|
| 919 | !modulus.is_zero(), | 
|---|
| 920 | "attempt to calculate with zero modulus!" | 
|---|
| 921 | ); | 
|---|
| 922 | if modulus.is_one() { | 
|---|
| 923 | return Some(Self::zero()); | 
|---|
| 924 | } | 
|---|
| 925 |  | 
|---|
| 926 | let mut r0; // = modulus.clone(); | 
|---|
| 927 | let mut r1 = self % modulus; | 
|---|
| 928 | let mut t0; // = Self::zero(); | 
|---|
| 929 | let mut t1; // = Self::one(); | 
|---|
| 930 |  | 
|---|
| 931 | // Lift and simplify the first iteration to avoid some initial allocations. | 
|---|
| 932 | if r1.is_zero() { | 
|---|
| 933 | return None; | 
|---|
| 934 | } else if r1.is_one() { | 
|---|
| 935 | return Some(r1); | 
|---|
| 936 | } else { | 
|---|
| 937 | let (q, r2) = modulus.div_rem(&r1); | 
|---|
| 938 | if r2.is_zero() { | 
|---|
| 939 | return None; | 
|---|
| 940 | } | 
|---|
| 941 | r0 = r1; | 
|---|
| 942 | r1 = r2; | 
|---|
| 943 | t0 = Self::one(); | 
|---|
| 944 | t1 = modulus - q; | 
|---|
| 945 | } | 
|---|
| 946 |  | 
|---|
| 947 | while !r1.is_zero() { | 
|---|
| 948 | let (q, r2) = r0.div_rem(&r1); | 
|---|
| 949 | r0 = r1; | 
|---|
| 950 | r1 = r2; | 
|---|
| 951 |  | 
|---|
| 952 | // let t2 = (t0 - q * t1) % modulus; | 
|---|
| 953 | let qt1 = q * &t1 % modulus; | 
|---|
| 954 | let t2 = if t0 < qt1 { | 
|---|
| 955 | t0 + (modulus - qt1) | 
|---|
| 956 | } else { | 
|---|
| 957 | t0 - qt1 | 
|---|
| 958 | }; | 
|---|
| 959 | t0 = t1; | 
|---|
| 960 | t1 = t2; | 
|---|
| 961 | } | 
|---|
| 962 |  | 
|---|
| 963 | if r0.is_one() { | 
|---|
| 964 | Some(t0) | 
|---|
| 965 | } else { | 
|---|
| 966 | None | 
|---|
| 967 | } | 
|---|
| 968 | } | 
|---|
| 969 |  | 
|---|
| 970 | /// Returns the truncated principal square root of `self` -- | 
|---|
| 971 | /// see [Roots::sqrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.sqrt) | 
|---|
| 972 | pub fn sqrt(&self) -> Self { | 
|---|
| 973 | Roots::sqrt(self) | 
|---|
| 974 | } | 
|---|
| 975 |  | 
|---|
| 976 | /// Returns the truncated principal cube root of `self` -- | 
|---|
| 977 | /// see [Roots::cbrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.cbrt). | 
|---|
| 978 | pub fn cbrt(&self) -> Self { | 
|---|
| 979 | Roots::cbrt(self) | 
|---|
| 980 | } | 
|---|
| 981 |  | 
|---|
| 982 | /// Returns the truncated principal `n`th root of `self` -- | 
|---|
| 983 | /// see [Roots::nth_root](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#tymethod.nth_root). | 
|---|
| 984 | pub fn nth_root(&self, n: u32) -> Self { | 
|---|
| 985 | Roots::nth_root(self, n) | 
|---|
| 986 | } | 
|---|
| 987 |  | 
|---|
| 988 | /// Returns the number of least-significant bits that are zero, | 
|---|
| 989 | /// or `None` if the entire number is zero. | 
|---|
| 990 | pub fn trailing_zeros(&self) -> Option<u64> { | 
|---|
| 991 | let i = self.data.iter().position(|&digit| digit != 0)?; | 
|---|
| 992 | let zeros: u64 = self.data[i].trailing_zeros().into(); | 
|---|
| 993 | Some(i as u64 * u64::from(big_digit::BITS) + zeros) | 
|---|
| 994 | } | 
|---|
| 995 |  | 
|---|
| 996 | /// Returns the number of least-significant bits that are ones. | 
|---|
| 997 | pub fn trailing_ones(&self) -> u64 { | 
|---|
| 998 | if let Some(i) = self.data.iter().position(|&digit| !digit != 0) { | 
|---|
| 999 | let ones: u64 = self.data[i].trailing_ones().into(); | 
|---|
| 1000 | i as u64 * u64::from(big_digit::BITS) + ones | 
|---|
| 1001 | } else { | 
|---|
| 1002 | self.data.len() as u64 * u64::from(big_digit::BITS) | 
|---|
| 1003 | } | 
|---|
| 1004 | } | 
|---|
| 1005 |  | 
|---|
| 1006 | /// Returns the number of one bits. | 
|---|
| 1007 | pub fn count_ones(&self) -> u64 { | 
|---|
| 1008 | self.data.iter().map(|&d| u64::from(d.count_ones())).sum() | 
|---|
| 1009 | } | 
|---|
| 1010 |  | 
|---|
| 1011 | /// Returns whether the bit in the given position is set | 
|---|
| 1012 | pub fn bit(&self, bit: u64) -> bool { | 
|---|
| 1013 | let bits_per_digit = u64::from(big_digit::BITS); | 
|---|
| 1014 | if let Some(digit_index) = (bit / bits_per_digit).to_usize() { | 
|---|
| 1015 | if let Some(digit) = self.data.get(digit_index) { | 
|---|
| 1016 | let bit_mask = (1 as BigDigit) << (bit % bits_per_digit); | 
|---|
| 1017 | return (digit & bit_mask) != 0; | 
|---|
| 1018 | } | 
|---|
| 1019 | } | 
|---|
| 1020 | false | 
|---|
| 1021 | } | 
|---|
| 1022 |  | 
|---|
| 1023 | /// Sets or clears the bit in the given position | 
|---|
| 1024 | /// | 
|---|
| 1025 | /// Note that setting a bit greater than the current bit length, a reallocation may be needed | 
|---|
| 1026 | /// to store the new digits | 
|---|
| 1027 | pub fn set_bit(&mut self, bit: u64, value: bool) { | 
|---|
| 1028 | // Note: we're saturating `digit_index` and `new_len` -- any such case is guaranteed to | 
|---|
| 1029 | // fail allocation, and that's more consistent than adding our own overflow panics. | 
|---|
| 1030 | let bits_per_digit = u64::from(big_digit::BITS); | 
|---|
| 1031 | let digit_index = (bit / bits_per_digit).to_usize().unwrap_or(usize::MAX); | 
|---|
| 1032 | let bit_mask = (1 as BigDigit) << (bit % bits_per_digit); | 
|---|
| 1033 | if value { | 
|---|
| 1034 | if digit_index >= self.data.len() { | 
|---|
| 1035 | let new_len = digit_index.saturating_add(1); | 
|---|
| 1036 | self.data.resize(new_len, 0); | 
|---|
| 1037 | } | 
|---|
| 1038 | self.data[digit_index] |= bit_mask; | 
|---|
| 1039 | } else if digit_index < self.data.len() { | 
|---|
| 1040 | self.data[digit_index] &= !bit_mask; | 
|---|
| 1041 | // the top bit may have been cleared, so normalize | 
|---|
| 1042 | self.normalize(); | 
|---|
| 1043 | } | 
|---|
| 1044 | } | 
|---|
| 1045 | } | 
|---|
| 1046 |  | 
|---|
| 1047 | impl num_traits::FromBytes for BigUint { | 
|---|
| 1048 | type Bytes = [u8]; | 
|---|
| 1049 |  | 
|---|
| 1050 | fn from_be_bytes(bytes: &Self::Bytes) -> Self { | 
|---|
| 1051 | Self::from_bytes_be(bytes) | 
|---|
| 1052 | } | 
|---|
| 1053 |  | 
|---|
| 1054 | fn from_le_bytes(bytes: &Self::Bytes) -> Self { | 
|---|
| 1055 | Self::from_bytes_le(bytes) | 
|---|
| 1056 | } | 
|---|
| 1057 | } | 
|---|
| 1058 |  | 
|---|
| 1059 | impl num_traits::ToBytes for BigUint { | 
|---|
| 1060 | type Bytes = Vec<u8>; | 
|---|
| 1061 |  | 
|---|
| 1062 | fn to_be_bytes(&self) -> Self::Bytes { | 
|---|
| 1063 | self.to_bytes_be() | 
|---|
| 1064 | } | 
|---|
| 1065 |  | 
|---|
| 1066 | fn to_le_bytes(&self) -> Self::Bytes { | 
|---|
| 1067 | self.to_bytes_le() | 
|---|
| 1068 | } | 
|---|
| 1069 | } | 
|---|
| 1070 |  | 
|---|
| 1071 | pub(crate) trait IntDigits { | 
|---|
| 1072 | fn digits(&self) -> &[BigDigit]; | 
|---|
| 1073 | fn digits_mut(&mut self) -> &mut Vec<BigDigit>; | 
|---|
| 1074 | fn normalize(&mut self); | 
|---|
| 1075 | fn capacity(&self) -> usize; | 
|---|
| 1076 | fn len(&self) -> usize; | 
|---|
| 1077 | } | 
|---|
| 1078 |  | 
|---|
| 1079 | impl IntDigits for BigUint { | 
|---|
| 1080 | #[ inline] | 
|---|
| 1081 | fn digits(&self) -> &[BigDigit] { | 
|---|
| 1082 | &self.data | 
|---|
| 1083 | } | 
|---|
| 1084 | #[ inline] | 
|---|
| 1085 | fn digits_mut(&mut self) -> &mut Vec<BigDigit> { | 
|---|
| 1086 | &mut self.data | 
|---|
| 1087 | } | 
|---|
| 1088 | #[ inline] | 
|---|
| 1089 | fn normalize(&mut self) { | 
|---|
| 1090 | self.normalize(); | 
|---|
| 1091 | } | 
|---|
| 1092 | #[ inline] | 
|---|
| 1093 | fn capacity(&self) -> usize { | 
|---|
| 1094 | self.data.capacity() | 
|---|
| 1095 | } | 
|---|
| 1096 | #[ inline] | 
|---|
| 1097 | fn len(&self) -> usize { | 
|---|
| 1098 | self.data.len() | 
|---|
| 1099 | } | 
|---|
| 1100 | } | 
|---|
| 1101 |  | 
|---|
| 1102 | /// Convert a `u32` chunk (len is either 1 or 2) to a single `u64` digit | 
|---|
| 1103 | #[ inline] | 
|---|
| 1104 | fn u32_chunk_to_u64(chunk: &[u32]) -> u64 { | 
|---|
| 1105 | // raw could have odd length | 
|---|
| 1106 | let mut digit: u64 = chunk[0] as u64; | 
|---|
| 1107 | if let Some(&hi: u32) = chunk.get(index:1) { | 
|---|
| 1108 | digit |= (hi as u64) << 32; | 
|---|
| 1109 | } | 
|---|
| 1110 | digit | 
|---|
| 1111 | } | 
|---|
| 1112 |  | 
|---|
| 1113 | cfg_32_or_test!( | 
|---|
| 1114 | /// Combine four `u32`s into a single `u128`. | 
|---|
| 1115 | #[ inline] | 
|---|
| 1116 | fn u32_to_u128(a: u32, b: u32, c: u32, d: u32) -> u128 { | 
|---|
| 1117 | u128::from(d) | (u128::from(c) << 32) | (u128::from(b) << 64) | (u128::from(a) << 96) | 
|---|
| 1118 | } | 
|---|
| 1119 | ); | 
|---|
| 1120 |  | 
|---|
| 1121 | cfg_32_or_test!( | 
|---|
| 1122 | /// Split a single `u128` into four `u32`. | 
|---|
| 1123 | #[ inline] | 
|---|
| 1124 | fn u32_from_u128(n: u128) -> (u32, u32, u32, u32) { | 
|---|
| 1125 | ( | 
|---|
| 1126 | (n >> 96) as u32, | 
|---|
| 1127 | (n >> 64) as u32, | 
|---|
| 1128 | (n >> 32) as u32, | 
|---|
| 1129 | n as u32, | 
|---|
| 1130 | ) | 
|---|
| 1131 | } | 
|---|
| 1132 | ); | 
|---|
| 1133 |  | 
|---|
| 1134 | cfg_digit!( | 
|---|
| 1135 | #[ test] | 
|---|
| 1136 | fn test_from_slice() { | 
|---|
| 1137 | fn check(slice: &[u32], data: &[BigDigit]) { | 
|---|
| 1138 | assert_eq!(BigUint::from_slice(slice).data, data); | 
|---|
| 1139 | } | 
|---|
| 1140 | check(&[1], &[1]); | 
|---|
| 1141 | check(&[0, 0, 0], &[]); | 
|---|
| 1142 | check(&[1, 2, 0, 0], &[1, 2]); | 
|---|
| 1143 | check(&[0, 0, 1, 2], &[0, 0, 1, 2]); | 
|---|
| 1144 | check(&[0, 0, 1, 2, 0, 0], &[0, 0, 1, 2]); | 
|---|
| 1145 | check(&[-1i32 as u32], &[-1i32 as BigDigit]); | 
|---|
| 1146 | } | 
|---|
| 1147 |  | 
|---|
| 1148 | #[ test] | 
|---|
| 1149 | fn test_from_slice() { | 
|---|
| 1150 | fn check(slice: &[u32], data: &[BigDigit]) { | 
|---|
| 1151 | assert_eq!( | 
|---|
| 1152 | BigUint::from_slice(slice).data, | 
|---|
| 1153 | data, | 
|---|
| 1154 | "from {:?}, to {:?}", | 
|---|
| 1155 | slice, | 
|---|
| 1156 | data | 
|---|
| 1157 | ); | 
|---|
| 1158 | } | 
|---|
| 1159 | check(&[1], &[1]); | 
|---|
| 1160 | check(&[0, 0, 0], &[]); | 
|---|
| 1161 | check(&[1, 2], &[8_589_934_593]); | 
|---|
| 1162 | check(&[1, 2, 0, 0], &[8_589_934_593]); | 
|---|
| 1163 | check(&[0, 0, 1, 2], &[0, 8_589_934_593]); | 
|---|
| 1164 | check(&[0, 0, 1, 2, 0, 0], &[0, 8_589_934_593]); | 
|---|
| 1165 | check(&[-1i32 as u32], &[(-1i32 as u32) as BigDigit]); | 
|---|
| 1166 | } | 
|---|
| 1167 | ); | 
|---|
| 1168 |  | 
|---|
| 1169 | #[ test] | 
|---|
| 1170 | fn test_u32_u128() { | 
|---|
| 1171 | assert_eq!(u32_from_u128(0u128), (0, 0, 0, 0)); | 
|---|
| 1172 | assert_eq!( | 
|---|
| 1173 | u32_from_u128(u128::MAX), | 
|---|
| 1174 | (u32::MAX, u32::MAX, u32::MAX, u32::MAX) | 
|---|
| 1175 | ); | 
|---|
| 1176 |  | 
|---|
| 1177 | assert_eq!(u32_from_u128(u32::MAX as u128), (0, 0, 0, u32::MAX)); | 
|---|
| 1178 |  | 
|---|
| 1179 | assert_eq!(u32_from_u128(u64::MAX as u128), (0, 0, u32::MAX, u32::MAX)); | 
|---|
| 1180 |  | 
|---|
| 1181 | assert_eq!( | 
|---|
| 1182 | u32_from_u128((u64::MAX as u128) + u32::MAX as u128), | 
|---|
| 1183 | (0, 1, 0, u32::MAX - 1) | 
|---|
| 1184 | ); | 
|---|
| 1185 |  | 
|---|
| 1186 | assert_eq!(u32_from_u128(36_893_488_151_714_070_528), (0, 2, 1, 0)); | 
|---|
| 1187 | } | 
|---|
| 1188 |  | 
|---|
| 1189 | #[ test] | 
|---|
| 1190 | fn test_u128_u32_roundtrip() { | 
|---|
| 1191 | // roundtrips | 
|---|
| 1192 | let values = vec![ | 
|---|
| 1193 | 0u128, | 
|---|
| 1194 | 1u128, | 
|---|
| 1195 | u64::MAX as u128 * 3, | 
|---|
| 1196 | u32::MAX as u128, | 
|---|
| 1197 | u64::MAX as u128, | 
|---|
| 1198 | (u64::MAX as u128) + u32::MAX as u128, | 
|---|
| 1199 | u128::MAX, | 
|---|
| 1200 | ]; | 
|---|
| 1201 |  | 
|---|
| 1202 | for val in &values { | 
|---|
| 1203 | let (a, b, c, d) = u32_from_u128(*val); | 
|---|
| 1204 | assert_eq!(u32_to_u128(a, b, c, d), *val); | 
|---|
| 1205 | } | 
|---|
| 1206 | } | 
|---|
| 1207 |  | 
|---|