| 1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * This package is an SSL implementation written |
| 5 | * by Eric Young (eay@cryptsoft.com). |
| 6 | * The implementation was written so as to conform with Netscapes SSL. |
| 7 | * |
| 8 | * This library is free for commercial and non-commercial use as long as |
| 9 | * the following conditions are aheared to. The following conditions |
| 10 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 12 | * included with this distribution is covered by the same copyright terms |
| 13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 14 | * |
| 15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 16 | * the code are not to be removed. |
| 17 | * If this package is used in a product, Eric Young should be given attribution |
| 18 | * as the author of the parts of the library used. |
| 19 | * This can be in the form of a textual message at program startup or |
| 20 | * in documentation (online or textual) provided with the package. |
| 21 | * |
| 22 | * Redistribution and use in source and binary forms, with or without |
| 23 | * modification, are permitted provided that the following conditions |
| 24 | * are met: |
| 25 | * 1. Redistributions of source code must retain the copyright |
| 26 | * notice, this list of conditions and the following disclaimer. |
| 27 | * 2. Redistributions in binary form must reproduce the above copyright |
| 28 | * notice, this list of conditions and the following disclaimer in the |
| 29 | * documentation and/or other materials provided with the distribution. |
| 30 | * 3. All advertising materials mentioning features or use of this software |
| 31 | * must display the following acknowledgement: |
| 32 | * "This product includes cryptographic software written by |
| 33 | * Eric Young (eay@cryptsoft.com)" |
| 34 | * The word 'cryptographic' can be left out if the rouines from the library |
| 35 | * being used are not cryptographic related :-). |
| 36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 37 | * the apps directory (application code) you must include an acknowledgement: |
| 38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 39 | * |
| 40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 50 | * SUCH DAMAGE. |
| 51 | * |
| 52 | * The licence and distribution terms for any publically available version or |
| 53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 54 | * copied and put under another distribution licence |
| 55 | * [including the GNU Public Licence.] */ |
| 56 | |
| 57 | #include <string.h> |
| 58 | |
| 59 | #include <openssl/asn1.h> |
| 60 | #include <openssl/digest.h> |
| 61 | #include <openssl/err.h> |
| 62 | #include <openssl/mem.h> |
| 63 | #include <openssl/obj.h> |
| 64 | #include <openssl/stack.h> |
| 65 | #include <openssl/x509.h> |
| 66 | #include <openssl/x509v3.h> |
| 67 | |
| 68 | #include "../internal.h" |
| 69 | #include "../x509v3/internal.h" |
| 70 | #include "internal.h" |
| 71 | |
| 72 | |
| 73 | int X509_issuer_name_cmp(const X509 *a, const X509 *b) { |
| 74 | return (X509_NAME_cmp(a: a->cert_info->issuer, b: b->cert_info->issuer)); |
| 75 | } |
| 76 | |
| 77 | int X509_subject_name_cmp(const X509 *a, const X509 *b) { |
| 78 | return (X509_NAME_cmp(a: a->cert_info->subject, b: b->cert_info->subject)); |
| 79 | } |
| 80 | |
| 81 | int X509_CRL_cmp(const X509_CRL *a, const X509_CRL *b) { |
| 82 | return (X509_NAME_cmp(a: a->crl->issuer, b: b->crl->issuer)); |
| 83 | } |
| 84 | |
| 85 | int X509_CRL_match(const X509_CRL *a, const X509_CRL *b) { |
| 86 | return OPENSSL_memcmp(s1: a->crl_hash, s2: b->crl_hash, SHA256_DIGEST_LENGTH); |
| 87 | } |
| 88 | |
| 89 | X509_NAME *X509_get_issuer_name(const X509 *a) { |
| 90 | return a->cert_info->issuer; |
| 91 | } |
| 92 | |
| 93 | unsigned long X509_issuer_name_hash(X509 *x) { |
| 94 | return (X509_NAME_hash(x: x->cert_info->issuer)); |
| 95 | } |
| 96 | |
| 97 | unsigned long X509_issuer_name_hash_old(X509 *x) { |
| 98 | return (X509_NAME_hash_old(x: x->cert_info->issuer)); |
| 99 | } |
| 100 | |
| 101 | X509_NAME *X509_get_subject_name(const X509 *a) { |
| 102 | return a->cert_info->subject; |
| 103 | } |
| 104 | |
| 105 | ASN1_INTEGER *X509_get_serialNumber(X509 *a) { |
| 106 | return a->cert_info->serialNumber; |
| 107 | } |
| 108 | |
| 109 | const ASN1_INTEGER *X509_get0_serialNumber(const X509 *x509) { |
| 110 | return x509->cert_info->serialNumber; |
| 111 | } |
| 112 | |
| 113 | unsigned long X509_subject_name_hash(X509 *x) { |
| 114 | return (X509_NAME_hash(x: x->cert_info->subject)); |
| 115 | } |
| 116 | |
| 117 | unsigned long X509_subject_name_hash_old(X509 *x) { |
| 118 | return (X509_NAME_hash_old(x: x->cert_info->subject)); |
| 119 | } |
| 120 | |
| 121 | // Compare two certificates: they must be identical for this to work. NB: |
| 122 | // Although "cmp" operations are generally prototyped to take "const" |
| 123 | // arguments (eg. for use in STACKs), the way X509 handling is - these |
| 124 | // operations may involve ensuring the hashes are up-to-date and ensuring |
| 125 | // certain cert information is cached. So this is the point where the |
| 126 | // "depth-first" constification tree has to halt with an evil cast. |
| 127 | int X509_cmp(const X509 *a, const X509 *b) { |
| 128 | // Fill in the |cert_hash| fields. |
| 129 | // |
| 130 | // TODO(davidben): This may fail, in which case the the hash will be all |
| 131 | // zeros. This produces a consistent comparison (failures are sticky), but |
| 132 | // not a good one. OpenSSL now returns -2, but this is not a consistent |
| 133 | // comparison and may cause misbehaving sorts by transitivity. For now, we |
| 134 | // retain the old OpenSSL behavior, which was to ignore the error. See |
| 135 | // https://crbug.com/boringssl/355. |
| 136 | x509v3_cache_extensions(x: (X509 *)a); |
| 137 | x509v3_cache_extensions(x: (X509 *)b); |
| 138 | |
| 139 | return OPENSSL_memcmp(s1: a->cert_hash, s2: b->cert_hash, SHA256_DIGEST_LENGTH); |
| 140 | } |
| 141 | |
| 142 | int X509_NAME_cmp(const X509_NAME *a, const X509_NAME *b) { |
| 143 | int ret; |
| 144 | |
| 145 | // Ensure canonical encoding is present and up to date |
| 146 | |
| 147 | if (!a->canon_enc || a->modified) { |
| 148 | ret = i2d_X509_NAME(in: (X509_NAME *)a, NULL); |
| 149 | if (ret < 0) { |
| 150 | return -2; |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | if (!b->canon_enc || b->modified) { |
| 155 | ret = i2d_X509_NAME(in: (X509_NAME *)b, NULL); |
| 156 | if (ret < 0) { |
| 157 | return -2; |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | ret = a->canon_enclen - b->canon_enclen; |
| 162 | |
| 163 | if (ret) { |
| 164 | return ret; |
| 165 | } |
| 166 | |
| 167 | return OPENSSL_memcmp(s1: a->canon_enc, s2: b->canon_enc, n: a->canon_enclen); |
| 168 | } |
| 169 | |
| 170 | unsigned long X509_NAME_hash(X509_NAME *x) { |
| 171 | unsigned long ret = 0; |
| 172 | unsigned char md[SHA_DIGEST_LENGTH]; |
| 173 | |
| 174 | // Make sure X509_NAME structure contains valid cached encoding |
| 175 | i2d_X509_NAME(in: x, NULL); |
| 176 | if (!EVP_Digest(data: x->canon_enc, len: x->canon_enclen, md_out: md, NULL, type: EVP_sha1(), NULL)) { |
| 177 | return 0; |
| 178 | } |
| 179 | |
| 180 | ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | |
| 181 | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L)) & |
| 182 | 0xffffffffL; |
| 183 | return ret; |
| 184 | } |
| 185 | |
| 186 | // I now DER encode the name and hash it. Since I cache the DER encoding, |
| 187 | // this is reasonably efficient. |
| 188 | |
| 189 | unsigned long X509_NAME_hash_old(X509_NAME *x) { |
| 190 | EVP_MD_CTX md_ctx; |
| 191 | unsigned long ret = 0; |
| 192 | unsigned char md[16]; |
| 193 | |
| 194 | // Make sure X509_NAME structure contains valid cached encoding |
| 195 | i2d_X509_NAME(in: x, NULL); |
| 196 | EVP_MD_CTX_init(ctx: &md_ctx); |
| 197 | // EVP_MD_CTX_set_flags(&md_ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); |
| 198 | if (EVP_DigestInit_ex(ctx: &md_ctx, type: EVP_md5(), NULL) && |
| 199 | EVP_DigestUpdate(ctx: &md_ctx, data: x->bytes->data, len: x->bytes->length) && |
| 200 | EVP_DigestFinal_ex(ctx: &md_ctx, md_out: md, NULL)) { |
| 201 | ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | |
| 202 | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L)) & |
| 203 | 0xffffffffL; |
| 204 | } |
| 205 | EVP_MD_CTX_cleanup(ctx: &md_ctx); |
| 206 | |
| 207 | return ret; |
| 208 | } |
| 209 | |
| 210 | X509 *X509_find_by_issuer_and_serial(const STACK_OF(X509) *sk, X509_NAME *name, |
| 211 | const ASN1_INTEGER *serial) { |
| 212 | if (serial->type != V_ASN1_INTEGER && serial->type != V_ASN1_NEG_INTEGER) { |
| 213 | return NULL; |
| 214 | } |
| 215 | |
| 216 | for (size_t i = 0; i < sk_X509_num(sk); i++) { |
| 217 | X509 *x509 = sk_X509_value(sk, i); |
| 218 | if (ASN1_INTEGER_cmp(x: X509_get0_serialNumber(x509), y: serial) == 0 && |
| 219 | X509_NAME_cmp(a: X509_get_issuer_name(a: x509), b: name) == 0) { |
| 220 | return x509; |
| 221 | } |
| 222 | } |
| 223 | return NULL; |
| 224 | } |
| 225 | |
| 226 | X509 *X509_find_by_subject(const STACK_OF(X509) *sk, X509_NAME *name) { |
| 227 | for (size_t i = 0; i < sk_X509_num(sk); i++) { |
| 228 | X509 *x509 = sk_X509_value(sk, i); |
| 229 | if (X509_NAME_cmp(a: X509_get_subject_name(a: x509), b: name) == 0) { |
| 230 | return x509; |
| 231 | } |
| 232 | } |
| 233 | return NULL; |
| 234 | } |
| 235 | |
| 236 | EVP_PKEY *X509_get_pubkey(X509 *x) { |
| 237 | if ((x == NULL) || (x->cert_info == NULL)) { |
| 238 | return NULL; |
| 239 | } |
| 240 | return (X509_PUBKEY_get(key: x->cert_info->key)); |
| 241 | } |
| 242 | |
| 243 | ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x) { |
| 244 | if (!x) { |
| 245 | return NULL; |
| 246 | } |
| 247 | return x->cert_info->key->public_key; |
| 248 | } |
| 249 | |
| 250 | int X509_check_private_key(X509 *x, const EVP_PKEY *k) { |
| 251 | EVP_PKEY *xk; |
| 252 | int ret; |
| 253 | |
| 254 | xk = X509_get_pubkey(x); |
| 255 | |
| 256 | if (xk) { |
| 257 | ret = EVP_PKEY_cmp(a: xk, b: k); |
| 258 | } else { |
| 259 | ret = -2; |
| 260 | } |
| 261 | |
| 262 | switch (ret) { |
| 263 | case 1: |
| 264 | break; |
| 265 | case 0: |
| 266 | OPENSSL_PUT_ERROR(X509, X509_R_KEY_VALUES_MISMATCH); |
| 267 | break; |
| 268 | case -1: |
| 269 | OPENSSL_PUT_ERROR(X509, X509_R_KEY_TYPE_MISMATCH); |
| 270 | break; |
| 271 | case -2: |
| 272 | OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE); |
| 273 | } |
| 274 | if (xk) { |
| 275 | EVP_PKEY_free(pkey: xk); |
| 276 | } |
| 277 | if (ret > 0) { |
| 278 | return 1; |
| 279 | } |
| 280 | return 0; |
| 281 | } |
| 282 | |
| 283 | // Not strictly speaking an "up_ref" as a STACK doesn't have a reference |
| 284 | // count but it has the same effect by duping the STACK and upping the ref of |
| 285 | // each X509 structure. |
| 286 | STACK_OF(X509) *X509_chain_up_ref(STACK_OF(X509) *chain) { |
| 287 | STACK_OF(X509) *ret = sk_X509_dup(sk: chain); |
| 288 | if (ret == NULL) { |
| 289 | return NULL; |
| 290 | } |
| 291 | for (size_t i = 0; i < sk_X509_num(sk: ret); i++) { |
| 292 | X509_up_ref(x509: sk_X509_value(sk: ret, i)); |
| 293 | } |
| 294 | return ret; |
| 295 | } |
| 296 | |