1 | /* Code for GIMPLE range related routines. |
---|---|
2 | Copyright (C) 2019-2025 Free Software Foundation, Inc. |
3 | Contributed by Andrew MacLeod <amacleod@redhat.com> |
4 | and Aldy Hernandez <aldyh@redhat.com>. |
5 | |
6 | This file is part of GCC. |
7 | |
8 | GCC is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by |
10 | the Free Software Foundation; either version 3, or (at your option) |
11 | any later version. |
12 | |
13 | GCC is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16 | GNU General Public License for more details. |
17 | |
18 | You should have received a copy of the GNU General Public License |
19 | along with GCC; see the file COPYING3. If not see |
20 | <http://www.gnu.org/licenses/>. */ |
21 | |
22 | #include "config.h" |
23 | #include "system.h" |
24 | #include "coretypes.h" |
25 | #include "backend.h" |
26 | #include "insn-codes.h" |
27 | #include "tree.h" |
28 | #include "gimple.h" |
29 | #include "ssa.h" |
30 | #include "gimple-pretty-print.h" |
31 | #include "optabs-tree.h" |
32 | #include "gimple-iterator.h" |
33 | #include "gimple-fold.h" |
34 | #include "wide-int.h" |
35 | #include "fold-const.h" |
36 | #include "case-cfn-macros.h" |
37 | #include "omp-general.h" |
38 | #include "cfgloop.h" |
39 | #include "tree-ssa-loop.h" |
40 | #include "tree-scalar-evolution.h" |
41 | #include "langhooks.h" |
42 | #include "vr-values.h" |
43 | #include "range.h" |
44 | #include "value-query.h" |
45 | #include "gimple-range-op.h" |
46 | #include "gimple-range.h" |
47 | #include "cgraph.h" |
48 | #include "alloc-pool.h" |
49 | #include "symbol-summary.h" |
50 | #include "ipa-utils.h" |
51 | #include "sreal.h" |
52 | #include "ipa-cp.h" |
53 | #include "ipa-prop.h" |
54 | #include "rtl.h" |
55 | // Construct a fur_source, and set the m_query field. |
56 | |
57 | fur_source::fur_source (range_query *q) |
58 | { |
59 | if (q) |
60 | m_query = q; |
61 | else |
62 | m_query = get_range_query (cfun); |
63 | m_depend_p = false; |
64 | } |
65 | |
66 | // Invoke range_of_expr on EXPR. |
67 | |
68 | bool |
69 | fur_source::get_operand (vrange &r, tree expr) |
70 | { |
71 | return m_query->range_of_expr (r, expr); |
72 | } |
73 | |
74 | // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current |
75 | // range_query to get the range on the edge. |
76 | |
77 | bool |
78 | fur_source::get_phi_operand (vrange &r, tree expr, edge e) |
79 | { |
80 | return m_query->range_on_edge (r, e, expr); |
81 | } |
82 | |
83 | // Default is no relation. |
84 | |
85 | relation_kind |
86 | fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED, |
87 | tree op2 ATTRIBUTE_UNUSED) |
88 | { |
89 | return VREL_VARYING; |
90 | } |
91 | |
92 | // Default registers nothing. |
93 | |
94 | void |
95 | fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED, |
96 | relation_kind k ATTRIBUTE_UNUSED, |
97 | tree op1 ATTRIBUTE_UNUSED, |
98 | tree op2 ATTRIBUTE_UNUSED) |
99 | { |
100 | } |
101 | |
102 | // Default registers nothing. |
103 | |
104 | void |
105 | fur_source::register_relation (edge e ATTRIBUTE_UNUSED, |
106 | relation_kind k ATTRIBUTE_UNUSED, |
107 | tree op1 ATTRIBUTE_UNUSED, |
108 | tree op2 ATTRIBUTE_UNUSED) |
109 | { |
110 | } |
111 | |
112 | // Get the value of EXPR on edge m_edge. |
113 | |
114 | bool |
115 | fur_edge::get_operand (vrange &r, tree expr) |
116 | { |
117 | return m_query->range_on_edge (r, m_edge, expr); |
118 | } |
119 | |
120 | // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current |
121 | // range_query to get the range on the edge. |
122 | |
123 | bool |
124 | fur_edge::get_phi_operand (vrange &r, tree expr, edge e) |
125 | { |
126 | // Edge to edge recalculations not supported yet, until we sort it out. |
127 | gcc_checking_assert (e == m_edge); |
128 | return m_query->range_on_edge (r, e, expr); |
129 | } |
130 | |
131 | // Instantiate a stmt based fur_source. |
132 | |
133 | fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q) |
134 | { |
135 | m_stmt = s; |
136 | } |
137 | |
138 | // Retrieve range of EXPR as it occurs as a use on stmt M_STMT. |
139 | |
140 | bool |
141 | fur_stmt::get_operand (vrange &r, tree expr) |
142 | { |
143 | return m_query->range_of_expr (r, expr, m_stmt); |
144 | } |
145 | |
146 | // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current |
147 | // range_query to get the range on the edge. |
148 | |
149 | bool |
150 | fur_stmt::get_phi_operand (vrange &r, tree expr, edge e) |
151 | { |
152 | // Pick up the range of expr from edge E. |
153 | fur_edge e_src (e, m_query); |
154 | return e_src.get_operand (r, expr); |
155 | } |
156 | |
157 | // Return relation based from m_stmt. |
158 | |
159 | relation_kind |
160 | fur_stmt::query_relation (tree op1, tree op2) |
161 | { |
162 | return m_query->relation ().query (s: m_stmt, ssa1: op1, ssa2: op2); |
163 | } |
164 | |
165 | // Instantiate a stmt based fur_source with a GORI object. |
166 | |
167 | |
168 | fur_depend::fur_depend (gimple *s, range_query *q) |
169 | : fur_stmt (s, q) |
170 | { |
171 | m_depend_p = true; |
172 | } |
173 | |
174 | // Register a relation on a stmt if there is an oracle. |
175 | |
176 | void |
177 | fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2) |
178 | { |
179 | m_query->relation ().record (s, k, op1, op2); |
180 | } |
181 | |
182 | // Register a relation on an edge if there is an oracle. |
183 | |
184 | void |
185 | fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2) |
186 | { |
187 | m_query->relation ().record (e, k, op1, op2); |
188 | } |
189 | |
190 | // This version of fur_source will pick a range up from a list of ranges |
191 | // supplied by the caller. |
192 | |
193 | class fur_list : public fur_source |
194 | { |
195 | public: |
196 | fur_list (vrange &r1, range_query *q = NULL); |
197 | fur_list (vrange &r1, vrange &r2, range_query *q = NULL); |
198 | fur_list (unsigned num, vrange **list, range_query *q = NULL); |
199 | virtual bool get_operand (vrange &r, tree expr) override; |
200 | virtual bool get_phi_operand (vrange &r, tree expr, edge e) override; |
201 | private: |
202 | vrange *m_local[2]; |
203 | vrange **m_list; |
204 | unsigned m_index; |
205 | unsigned m_limit; |
206 | }; |
207 | |
208 | // One range supplied for unary operations. |
209 | |
210 | fur_list::fur_list (vrange &r1, range_query *q) : fur_source (q) |
211 | { |
212 | m_list = m_local; |
213 | m_index = 0; |
214 | m_limit = 1; |
215 | m_local[0] = &r1; |
216 | } |
217 | |
218 | // Two ranges supplied for binary operations. |
219 | |
220 | fur_list::fur_list (vrange &r1, vrange &r2, range_query *q) : fur_source (q) |
221 | { |
222 | m_list = m_local; |
223 | m_index = 0; |
224 | m_limit = 2; |
225 | m_local[0] = &r1; |
226 | m_local[1] = &r2; |
227 | } |
228 | |
229 | // Arbitrary number of ranges in a vector. |
230 | |
231 | fur_list::fur_list (unsigned num, vrange **list, range_query *q) |
232 | : fur_source (q) |
233 | { |
234 | m_list = list; |
235 | m_index = 0; |
236 | m_limit = num; |
237 | } |
238 | |
239 | // Get the next operand from the vector, ensure types are compatible. |
240 | |
241 | bool |
242 | fur_list::get_operand (vrange &r, tree expr) |
243 | { |
244 | // Do not use the vector for non-ssa-names, or if it has been emptied. |
245 | if (TREE_CODE (expr) != SSA_NAME || m_index >= m_limit) |
246 | return m_query->range_of_expr (r, expr); |
247 | r = *m_list[m_index++]; |
248 | gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ())); |
249 | return true; |
250 | } |
251 | |
252 | // This will simply pick the next operand from the vector. |
253 | bool |
254 | fur_list::get_phi_operand (vrange &r, tree expr, edge e ATTRIBUTE_UNUSED) |
255 | { |
256 | return get_operand (r, expr); |
257 | } |
258 | |
259 | // Fold stmt S into range R using R1 as the first operand. |
260 | |
261 | bool |
262 | fold_range (vrange &r, gimple *s, vrange &r1, range_query *q) |
263 | { |
264 | fold_using_range f; |
265 | fur_list src (r1, q); |
266 | return f.fold_stmt (r, s, src); |
267 | } |
268 | |
269 | // Fold stmt S into range R using R1 and R2 as the first two operands. |
270 | |
271 | bool |
272 | fold_range (vrange &r, gimple *s, vrange &r1, vrange &r2, range_query *q) |
273 | { |
274 | fold_using_range f; |
275 | fur_list src (r1, r2, q); |
276 | return f.fold_stmt (r, s, src); |
277 | } |
278 | |
279 | // Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial |
280 | // operands encountered. |
281 | |
282 | bool |
283 | fold_range (vrange &r, gimple *s, unsigned num_elements, vrange **vector, |
284 | range_query *q) |
285 | { |
286 | fold_using_range f; |
287 | fur_list src (num_elements, vector, q); |
288 | return f.fold_stmt (r, s, src); |
289 | } |
290 | |
291 | // Fold stmt S into range R using range query Q. |
292 | |
293 | bool |
294 | fold_range (vrange &r, gimple *s, range_query *q) |
295 | { |
296 | fold_using_range f; |
297 | fur_stmt src (s, q); |
298 | return f.fold_stmt (r, s, src); |
299 | } |
300 | |
301 | // Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE. |
302 | |
303 | bool |
304 | fold_range (vrange &r, gimple *s, edge on_edge, range_query *q) |
305 | { |
306 | fold_using_range f; |
307 | fur_edge src (on_edge, q); |
308 | return f.fold_stmt (r, s, src); |
309 | } |
310 | |
311 | // Calculate op1 on statetemt S with LHS into range R using range query Q |
312 | // to resolve any other operands. |
313 | |
314 | bool |
315 | op1_range (vrange &r, gimple *s, const vrange &lhs, range_query *q) |
316 | { |
317 | gimple_range_op_handler handler (s); |
318 | if (!handler) |
319 | return false; |
320 | |
321 | fur_stmt src (s, q); |
322 | |
323 | tree op2_expr = handler.operand2 (); |
324 | if (!op2_expr) |
325 | return handler.calc_op1 (r, lhs_range: lhs); |
326 | |
327 | value_range op2 (TREE_TYPE (op2_expr)); |
328 | if (!src.get_operand (r&: op2, expr: op2_expr)) |
329 | return false; |
330 | |
331 | return handler.calc_op1 (r, lhs_range: lhs, op2_range: op2); |
332 | } |
333 | |
334 | // Calculate op1 on statetemt S into range R using range query Q. |
335 | // LHS is set to VARYING in this case. |
336 | |
337 | bool |
338 | op1_range (vrange &r, gimple *s, range_query *q) |
339 | { |
340 | tree lhs_type = gimple_range_type (s); |
341 | if (!lhs_type) |
342 | return false; |
343 | value_range lhs_range; |
344 | lhs_range.set_varying (lhs_type); |
345 | return op1_range (r, s, lhs: lhs_range, q); |
346 | } |
347 | |
348 | // Calculate op2 on statetemt S with LHS into range R using range query Q |
349 | // to resolve any other operands. |
350 | |
351 | bool |
352 | op2_range (vrange &r, gimple *s, const vrange &lhs, range_query *q) |
353 | { |
354 | |
355 | gimple_range_op_handler handler (s); |
356 | if (!handler) |
357 | return false; |
358 | |
359 | fur_stmt src (s, q); |
360 | |
361 | value_range op1 (TREE_TYPE (handler.operand1 ())); |
362 | if (!src.get_operand (r&: op1, expr: handler.operand1 ())) |
363 | return false; |
364 | |
365 | return handler.calc_op2 (r, lhs_range: lhs, op1_range: op1); |
366 | } |
367 | |
368 | // Calculate op2 on statetemt S into range R using range query Q. |
369 | // LHS is set to VARYING in this case. |
370 | |
371 | bool |
372 | op2_range (vrange &r, gimple *s, range_query *q) |
373 | { |
374 | tree lhs_type = gimple_range_type (s); |
375 | if (!lhs_type) |
376 | return false; |
377 | value_range lhs_range; |
378 | lhs_range.set_varying (lhs_type); |
379 | return op2_range (r, s, lhs: lhs_range, q); |
380 | } |
381 | |
382 | // Provide a fur_source which can be used to determine any relations on |
383 | // a statement. It manages the callback from fold_using_ranges to determine |
384 | // a relation_trio for a statement. |
385 | |
386 | class fur_relation : public fur_stmt |
387 | { |
388 | public: |
389 | fur_relation (gimple *s, range_query *q = NULL); |
390 | virtual void register_relation (gimple *stmt, relation_kind k, tree op1, |
391 | tree op2); |
392 | virtual void register_relation (edge e, relation_kind k, tree op1, |
393 | tree op2); |
394 | relation_trio trio() const; |
395 | private: |
396 | relation_kind def_op1, def_op2, op1_op2; |
397 | }; |
398 | |
399 | fur_relation::fur_relation (gimple *s, range_query *q) : fur_stmt (s, q) |
400 | { |
401 | def_op1 = def_op2 = op1_op2 = VREL_VARYING; |
402 | } |
403 | |
404 | // Construct a trio from what is known. |
405 | |
406 | relation_trio |
407 | fur_relation::trio () const |
408 | { |
409 | return relation_trio (def_op1, def_op2, op1_op2); |
410 | } |
411 | |
412 | // Don't support edges, but avoid a compiler warning by providing the routine. |
413 | |
414 | void |
415 | fur_relation::register_relation (edge, relation_kind, tree, tree) |
416 | { |
417 | } |
418 | |
419 | // Register relation K between OP1 and OP2 on STMT. |
420 | |
421 | void |
422 | fur_relation::register_relation (gimple *stmt, relation_kind k, tree op1, |
423 | tree op2) |
424 | { |
425 | tree lhs = gimple_get_lhs (stmt); |
426 | tree a1 = NULL_TREE; |
427 | tree a2 = NULL_TREE; |
428 | switch (gimple_code (g: stmt)) |
429 | { |
430 | case GIMPLE_COND: |
431 | a1 = gimple_cond_lhs (gs: stmt); |
432 | a2 = gimple_cond_rhs (gs: stmt); |
433 | break; |
434 | case GIMPLE_ASSIGN: |
435 | a1 = gimple_assign_rhs1 (gs: stmt); |
436 | if (gimple_num_ops (gs: stmt) >= 3) |
437 | a2 = gimple_assign_rhs2 (gs: stmt); |
438 | break; |
439 | default: |
440 | break; |
441 | } |
442 | // STMT is of the form LHS = A1 op A2, now map the relation to these |
443 | // operands, if possible. |
444 | if (op1 == lhs) |
445 | { |
446 | if (op2 == a1) |
447 | def_op1 = k; |
448 | else if (op2 == a2) |
449 | def_op2 = k; |
450 | } |
451 | else if (op2 == lhs) |
452 | { |
453 | if (op1 == a1) |
454 | def_op1 = relation_swap (r: k); |
455 | else if (op1 == a2) |
456 | def_op2 = relation_swap (r: k); |
457 | } |
458 | else |
459 | { |
460 | if (op1 == a1 && op2 == a2) |
461 | op1_op2 = k; |
462 | else if (op2 == a1 && op1 == a2) |
463 | op1_op2 = relation_swap (r: k); |
464 | } |
465 | } |
466 | |
467 | // Return the relation trio for stmt S using query Q. |
468 | |
469 | relation_trio |
470 | fold_relations (gimple *s, range_query *q) |
471 | { |
472 | fold_using_range f; |
473 | fur_relation src (s, q); |
474 | tree lhs = gimple_range_ssa_p (exp: gimple_get_lhs (s)); |
475 | if (lhs) |
476 | { |
477 | value_range vr(TREE_TYPE (lhs)); |
478 | if (f.fold_stmt (r&: vr, s, src)) |
479 | return src.trio (); |
480 | } |
481 | return TRIO_VARYING; |
482 | } |
483 | |
484 | // ------------------------------------------------------------------------- |
485 | |
486 | // Adjust the range for a pointer difference where the operands came |
487 | // from a memchr. |
488 | // |
489 | // This notices the following sequence: |
490 | // |
491 | // def = __builtin_memchr (arg, 0, sz) |
492 | // n = def - arg |
493 | // |
494 | // The range for N can be narrowed to [0, PTRDIFF_MAX - 1]. |
495 | |
496 | static void |
497 | adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt) |
498 | { |
499 | tree op0 = gimple_assign_rhs1 (gs: diff_stmt); |
500 | tree op1 = gimple_assign_rhs2 (gs: diff_stmt); |
501 | tree op0_ptype = TREE_TYPE (TREE_TYPE (op0)); |
502 | tree op1_ptype = TREE_TYPE (TREE_TYPE (op1)); |
503 | gimple *call; |
504 | |
505 | if (TREE_CODE (op0) == SSA_NAME |
506 | && TREE_CODE (op1) == SSA_NAME |
507 | && (call = SSA_NAME_DEF_STMT (op0)) |
508 | && is_gimple_call (gs: call) |
509 | && gimple_call_builtin_p (call, BUILT_IN_MEMCHR) |
510 | && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node) |
511 | && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node) |
512 | && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node) |
513 | && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node) |
514 | && gimple_call_builtin_p (call, BUILT_IN_MEMCHR) |
515 | && vrp_operand_equal_p (op1, gimple_call_arg (gs: call, index: 0)) |
516 | && integer_zerop (gimple_call_arg (gs: call, index: 1))) |
517 | { |
518 | wide_int maxm1 = irange_val_max (ptrdiff_type_node) - 1; |
519 | res.intersect (int_range<2> (ptrdiff_type_node, |
520 | wi::zero (TYPE_PRECISION (ptrdiff_type_node)), |
521 | maxm1)); |
522 | } |
523 | } |
524 | |
525 | // Adjust the range for an IMAGPART_EXPR. |
526 | |
527 | static void |
528 | adjust_imagpart_expr (vrange &res, const gimple *stmt) |
529 | { |
530 | tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); |
531 | |
532 | if (TREE_CODE (name) != SSA_NAME || !SSA_NAME_DEF_STMT (name)) |
533 | return; |
534 | |
535 | gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
536 | if (is_gimple_call (gs: def_stmt) && gimple_call_internal_p (gs: def_stmt)) |
537 | { |
538 | switch (gimple_call_internal_fn (gs: def_stmt)) |
539 | { |
540 | case IFN_ADD_OVERFLOW: |
541 | case IFN_SUB_OVERFLOW: |
542 | case IFN_MUL_OVERFLOW: |
543 | case IFN_UADDC: |
544 | case IFN_USUBC: |
545 | case IFN_ATOMIC_COMPARE_EXCHANGE: |
546 | { |
547 | int_range<2> r; |
548 | r.set_varying (boolean_type_node); |
549 | tree type = TREE_TYPE (gimple_assign_lhs (stmt)); |
550 | range_cast (r, type); |
551 | res.intersect (r); |
552 | } |
553 | default: |
554 | break; |
555 | } |
556 | return; |
557 | } |
558 | if (is_gimple_assign (gs: def_stmt) |
559 | && gimple_assign_rhs_code (gs: def_stmt) == COMPLEX_CST) |
560 | { |
561 | tree cst = gimple_assign_rhs1 (gs: def_stmt); |
562 | if (TREE_CODE (cst) == COMPLEX_CST |
563 | && TREE_CODE (TREE_TYPE (TREE_TYPE (cst))) == INTEGER_TYPE) |
564 | { |
565 | wide_int w = wi::to_wide (TREE_IMAGPART (cst)); |
566 | int_range<1> imag (TREE_TYPE (TREE_IMAGPART (cst)), w, w); |
567 | res.intersect (imag); |
568 | } |
569 | } |
570 | } |
571 | |
572 | // Adjust the range for a REALPART_EXPR. |
573 | |
574 | static void |
575 | adjust_realpart_expr (vrange &res, const gimple *stmt) |
576 | { |
577 | tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); |
578 | |
579 | if (TREE_CODE (name) != SSA_NAME) |
580 | return; |
581 | |
582 | gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
583 | if (!SSA_NAME_DEF_STMT (name)) |
584 | return; |
585 | |
586 | if (is_gimple_assign (gs: def_stmt) |
587 | && gimple_assign_rhs_code (gs: def_stmt) == COMPLEX_CST) |
588 | { |
589 | tree cst = gimple_assign_rhs1 (gs: def_stmt); |
590 | if (TREE_CODE (cst) == COMPLEX_CST |
591 | && TREE_CODE (TREE_TYPE (TREE_TYPE (cst))) == INTEGER_TYPE) |
592 | { |
593 | wide_int imag = wi::to_wide (TREE_REALPART (cst)); |
594 | int_range<2> tmp (TREE_TYPE (TREE_REALPART (cst)), imag, imag); |
595 | res.intersect (tmp); |
596 | } |
597 | } |
598 | } |
599 | |
600 | // This function looks for situations when walking the use/def chains |
601 | // may provide additional contextual range information not exposed on |
602 | // this statement. |
603 | |
604 | static void |
605 | gimple_range_adjustment (vrange &res, const gimple *stmt) |
606 | { |
607 | switch (gimple_expr_code (stmt)) |
608 | { |
609 | case POINTER_DIFF_EXPR: |
610 | adjust_pointer_diff_expr (res&: as_a <irange> (v&: res), diff_stmt: stmt); |
611 | return; |
612 | |
613 | case IMAGPART_EXPR: |
614 | adjust_imagpart_expr (res, stmt); |
615 | return; |
616 | |
617 | case REALPART_EXPR: |
618 | adjust_realpart_expr (res, stmt); |
619 | return; |
620 | |
621 | default: |
622 | break; |
623 | } |
624 | } |
625 | |
626 | // Calculate a range for statement S and return it in R. If NAME is provided it |
627 | // represents the SSA_NAME on the LHS of the statement. It is only required |
628 | // if there is more than one lhs/output. If a range cannot |
629 | // be calculated, return false. |
630 | |
631 | bool |
632 | fold_using_range::fold_stmt (vrange &r, gimple *s, fur_source &src, tree name) |
633 | { |
634 | bool res = false; |
635 | // If name and S are specified, make sure it is an LHS of S. |
636 | gcc_checking_assert (!name || !gimple_get_lhs (s) || |
637 | name == gimple_get_lhs (s)); |
638 | |
639 | if (!name) |
640 | name = gimple_get_lhs (s); |
641 | |
642 | // Process addresses. |
643 | if (gimple_code (g: s) == GIMPLE_ASSIGN |
644 | && gimple_assign_rhs_code (gs: s) == ADDR_EXPR) |
645 | return range_of_address (r&: as_a <prange> (v&: r), s, src); |
646 | |
647 | gimple_range_op_handler handler (s); |
648 | if (handler) |
649 | res = range_of_range_op (r, handler, src); |
650 | else if (is_a<gphi *>(p: s)) |
651 | res = range_of_phi (r, phi: as_a<gphi *> (p: s), src); |
652 | else if (is_a<gcall *>(p: s)) |
653 | res = range_of_call (r, call: as_a<gcall *> (p: s), src); |
654 | else if (is_a<gassign *> (p: s) && gimple_assign_rhs_code (gs: s) == COND_EXPR) |
655 | res = range_of_cond_expr (r, cond: as_a<gassign *> (p: s), src); |
656 | |
657 | // If the result is varying, check for basic nonnegativeness. |
658 | // Specifically this helps for now with strict enum in cases like |
659 | // g++.dg/warn/pr33738.C. |
660 | bool so_p; |
661 | if (res && r.varying_p () && INTEGRAL_TYPE_P (r.type ()) |
662 | && gimple_stmt_nonnegative_warnv_p (s, &so_p)) |
663 | r.set_nonnegative (r.type ()); |
664 | |
665 | if (!res) |
666 | { |
667 | // If no name specified or range is unsupported, bail. |
668 | if (!name || !gimple_range_ssa_p (exp: name)) |
669 | return false; |
670 | // We don't understand the stmt, so return the global range. |
671 | gimple_range_global (v&: r, name); |
672 | return true; |
673 | } |
674 | |
675 | if (r.undefined_p ()) |
676 | return true; |
677 | |
678 | // We sometimes get compatible types copied from operands, make sure |
679 | // the correct type is being returned. |
680 | if (name && TREE_TYPE (name) != r.type ()) |
681 | { |
682 | gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name))); |
683 | range_cast (r, TREE_TYPE (name)); |
684 | } |
685 | return true; |
686 | } |
687 | |
688 | // Calculate a range for range_op statement S and return it in R. If any |
689 | // If a range cannot be calculated, return false. |
690 | |
691 | bool |
692 | fold_using_range::range_of_range_op (vrange &r, |
693 | gimple_range_op_handler &handler, |
694 | fur_source &src) |
695 | { |
696 | gcc_checking_assert (handler); |
697 | gimple *s = handler.stmt (); |
698 | tree type = gimple_range_type (s); |
699 | if (!type) |
700 | return false; |
701 | |
702 | tree lhs = handler.lhs (); |
703 | tree op1 = handler.operand1 (); |
704 | tree op2 = handler.operand2 (); |
705 | |
706 | // Certain types of builtin functions may have no arguments. |
707 | if (!op1) |
708 | { |
709 | value_range r1 (type); |
710 | if (!handler.fold_range (r, type, lh: r1, rh: r1)) |
711 | r.set_varying (type); |
712 | return true; |
713 | } |
714 | |
715 | value_range range1 (TREE_TYPE (op1)); |
716 | value_range range2 (op2 ? TREE_TYPE (op2) : TREE_TYPE (op1)); |
717 | |
718 | if (src.get_operand (r&: range1, expr: op1)) |
719 | { |
720 | if (!op2) |
721 | { |
722 | // Fold range, and register any dependency if available. |
723 | value_range r2 (type); |
724 | r2.set_varying (type); |
725 | if (!handler.fold_range (r, type, lh: range1, rh: r2)) |
726 | r.set_varying (type); |
727 | if (lhs && gimple_range_ssa_p (exp: op1)) |
728 | { |
729 | if (src.gori_ssa ()) |
730 | src.gori_ssa ()->register_dependency (name: lhs, ssa1: op1); |
731 | relation_kind rel; |
732 | rel = handler.lhs_op1_relation (lhs: r, op1: range1, op2: range1); |
733 | if (rel != VREL_VARYING) |
734 | src.register_relation (s, k: rel, op1: lhs, op2: op1); |
735 | } |
736 | } |
737 | else if (src.get_operand (r&: range2, expr: op2)) |
738 | { |
739 | relation_kind rel = src.query_relation (op1, op2); |
740 | if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_VARYING) |
741 | { |
742 | fprintf (stream: dump_file, format: " folding with relation "); |
743 | print_generic_expr (dump_file, op1, TDF_SLIM); |
744 | print_relation (f: dump_file, rel); |
745 | print_generic_expr (dump_file, op2, TDF_SLIM); |
746 | fputc (c: '\n', stream: dump_file); |
747 | } |
748 | // Fold range, and register any dependency if available. |
749 | if (!handler.fold_range (r, type, lh: range1, rh: range2, |
750 | relation_trio::op1_op2 (k: rel))) |
751 | r.set_varying (type); |
752 | if (irange::supports_p (type)) |
753 | relation_fold_and_or (lhs_range&: as_a <irange> (v&: r), s, src, op1&: range1, op2&: range2); |
754 | if (lhs) |
755 | { |
756 | if (src.gori_ssa ()) |
757 | { |
758 | src.gori_ssa ()->register_dependency (name: lhs, ssa1: op1); |
759 | src.gori_ssa ()->register_dependency (name: lhs, ssa1: op2); |
760 | } |
761 | if (gimple_range_ssa_p (exp: op1)) |
762 | { |
763 | relation_kind rel2 = handler.lhs_op1_relation (lhs: r, op1: range1, |
764 | op2: range2, rel); |
765 | if (rel2 != VREL_VARYING) |
766 | src.register_relation (s, k: rel2, op1: lhs, op2: op1); |
767 | } |
768 | if (gimple_range_ssa_p (exp: op2)) |
769 | { |
770 | relation_kind rel2 = handler.lhs_op2_relation (lhs: r, op1: range1, |
771 | op2: range2, rel); |
772 | if (rel2 != VREL_VARYING) |
773 | src.register_relation (s, k: rel2, op1: lhs, op2); |
774 | } |
775 | } |
776 | // Check for an existing BB, as we maybe asked to fold an |
777 | // artificial statement not in the CFG. |
778 | else if (is_a<gcond *> (p: s) && gimple_bb (g: s)) |
779 | { |
780 | basic_block bb = gimple_bb (g: s); |
781 | edge e0 = EDGE_SUCC (bb, 0); |
782 | /* During RTL expansion one of the edges can be removed |
783 | if expansion proves the jump is unconditional. */ |
784 | edge e1 = single_succ_p (bb) ? NULL : EDGE_SUCC (bb, 1); |
785 | |
786 | gcc_checking_assert (e1 || currently_expanding_to_rtl); |
787 | if (!single_pred_p (bb: e0->dest)) |
788 | e0 = NULL; |
789 | if (e1 && !single_pred_p (bb: e1->dest)) |
790 | e1 = NULL; |
791 | src.register_outgoing_edges (as_a<gcond *> (p: s), |
792 | lhs_range&: as_a <irange> (v&: r), e0, e1); |
793 | } |
794 | } |
795 | else |
796 | r.set_varying (type); |
797 | } |
798 | else |
799 | r.set_varying (type); |
800 | // Make certain range-op adjustments that aren't handled any other way. |
801 | gimple_range_adjustment (res&: r, stmt: s); |
802 | return true; |
803 | } |
804 | |
805 | // Calculate the range of an assignment containing an ADDR_EXPR. |
806 | // Return the range in R. |
807 | // If a range cannot be calculated, set it to VARYING and return true. |
808 | |
809 | bool |
810 | fold_using_range::range_of_address (prange &r, gimple *stmt, fur_source &src) |
811 | { |
812 | gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN); |
813 | gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR); |
814 | |
815 | bool strict_overflow_p; |
816 | tree expr = gimple_assign_rhs1 (gs: stmt); |
817 | poly_int64 bitsize, bitpos; |
818 | tree offset; |
819 | machine_mode mode; |
820 | int unsignedp, reversep, volatilep; |
821 | tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, |
822 | &bitpos, &offset, &mode, &unsignedp, |
823 | &reversep, &volatilep); |
824 | |
825 | |
826 | if (base != NULL_TREE |
827 | && TREE_CODE (base) == MEM_REF |
828 | && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) |
829 | { |
830 | tree ssa = TREE_OPERAND (base, 0); |
831 | tree lhs = gimple_get_lhs (stmt); |
832 | if (lhs && gimple_range_ssa_p (exp: ssa) && src.gori_ssa ()) |
833 | src.gori_ssa ()->register_dependency (name: lhs, ssa1: ssa); |
834 | src.get_operand (r, expr: ssa); |
835 | range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt))); |
836 | |
837 | poly_offset_int off = 0; |
838 | bool off_cst = false; |
839 | if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST) |
840 | { |
841 | off = mem_ref_offset (base); |
842 | if (offset) |
843 | off += poly_offset_int::from (a: wi::to_poly_wide (t: offset), |
844 | sgn: SIGNED); |
845 | off <<= LOG2_BITS_PER_UNIT; |
846 | off += bitpos; |
847 | off_cst = true; |
848 | } |
849 | /* If &X->a is equal to X, the range of X is the result. */ |
850 | if (off_cst && known_eq (off, 0)) |
851 | return true; |
852 | else if (flag_delete_null_pointer_checks |
853 | && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))) |
854 | { |
855 | /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't |
856 | allow going from non-NULL pointer to NULL. */ |
857 | if (r.undefined_p () |
858 | || !r.contains_p (wi::zero (TYPE_PRECISION (TREE_TYPE (expr))))) |
859 | { |
860 | /* We could here instead adjust r by off >> LOG2_BITS_PER_UNIT |
861 | using POINTER_PLUS_EXPR if off_cst and just fall back to |
862 | this. */ |
863 | r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
864 | return true; |
865 | } |
866 | } |
867 | /* If MEM_REF has a "positive" offset, consider it non-NULL |
868 | always, for -fdelete-null-pointer-checks also "negative" |
869 | ones. Punt for unknown offsets (e.g. variable ones). */ |
870 | if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)) |
871 | && off_cst |
872 | && known_ne (off, 0) |
873 | && (flag_delete_null_pointer_checks || known_gt (off, 0))) |
874 | { |
875 | r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
876 | return true; |
877 | } |
878 | r.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
879 | return true; |
880 | } |
881 | |
882 | // Handle "= &a". |
883 | if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p)) |
884 | { |
885 | r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
886 | return true; |
887 | } |
888 | |
889 | // Otherwise return varying. |
890 | r.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
891 | return true; |
892 | } |
893 | |
894 | // Calculate a range for phi statement S and return it in R. |
895 | // If a range cannot be calculated, return false. |
896 | |
897 | bool |
898 | fold_using_range::range_of_phi (vrange &r, gphi *phi, fur_source &src) |
899 | { |
900 | tree phi_def = gimple_phi_result (gs: phi); |
901 | tree type = gimple_range_type (s: phi); |
902 | value_range arg_range (type); |
903 | value_range equiv_range (type); |
904 | unsigned x; |
905 | |
906 | if (!type) |
907 | return false; |
908 | |
909 | // Track if all executable arguments are the same. |
910 | tree single_arg = NULL_TREE; |
911 | bool seen_arg = false; |
912 | |
913 | relation_oracle *oracle = &(src.query()->relation ()); |
914 | // Start with an empty range, unioning in each argument's range. |
915 | r.set_undefined (); |
916 | for (x = 0; x < gimple_phi_num_args (gs: phi); x++) |
917 | { |
918 | tree arg = gimple_phi_arg_def (gs: phi, index: x); |
919 | // An argument that is the same as the def provides no new range. |
920 | if (arg == phi_def) |
921 | continue; |
922 | |
923 | edge e = gimple_phi_arg_edge (phi, i: x); |
924 | |
925 | // Get the range of the argument on its edge. |
926 | src.get_phi_operand (r&: arg_range, expr: arg, e); |
927 | |
928 | if (!arg_range.undefined_p ()) |
929 | { |
930 | // Register potential dependencies for stale value tracking. |
931 | // Likewise, if the incoming PHI argument is equivalent to this |
932 | // PHI definition, it provides no new info. Accumulate these ranges |
933 | // in case all arguments are equivalences. |
934 | if (oracle->query (e, ssa1: arg, ssa2: phi_def) == VREL_EQ) |
935 | equiv_range.union_(r: arg_range); |
936 | else |
937 | r.union_ (arg_range); |
938 | |
939 | if (gimple_range_ssa_p (exp: arg) && src.gori_ssa ()) |
940 | src.gori_ssa ()->register_dependency (name: phi_def, ssa1: arg); |
941 | } |
942 | |
943 | // Track if all arguments are the same. |
944 | if (!seen_arg) |
945 | { |
946 | seen_arg = true; |
947 | single_arg = arg; |
948 | } |
949 | else if (single_arg != arg) |
950 | single_arg = NULL_TREE; |
951 | |
952 | // Once the value reaches varying, stop looking. |
953 | if (r.varying_p () && single_arg == NULL_TREE) |
954 | break; |
955 | } |
956 | |
957 | // If all arguments were equivalences, use the equivalence ranges as no |
958 | // arguments were processed. |
959 | if (r.undefined_p () && !equiv_range.undefined_p ()) |
960 | r = equiv_range; |
961 | |
962 | // If the PHI boils down to a single effective argument, look at it. |
963 | if (single_arg) |
964 | { |
965 | // Symbolic arguments can be equivalences. |
966 | if (gimple_range_ssa_p (exp: single_arg)) |
967 | { |
968 | // Only allow the equivalence if the PHI definition does not |
969 | // dominate any incoming edge for SINGLE_ARG. |
970 | // See PR 108139 and 109462. |
971 | basic_block bb = gimple_bb (g: phi); |
972 | if (!dom_info_available_p (CDI_DOMINATORS)) |
973 | single_arg = NULL; |
974 | else |
975 | for (x = 0; x < gimple_phi_num_args (gs: phi); x++) |
976 | if (gimple_phi_arg_def (gs: phi, index: x) == single_arg |
977 | && dominated_by_p (CDI_DOMINATORS, |
978 | gimple_phi_arg_edge (phi, i: x)->src, |
979 | bb)) |
980 | { |
981 | single_arg = NULL; |
982 | break; |
983 | } |
984 | if (single_arg) |
985 | src.register_relation (s: phi, k: VREL_EQ, op1: phi_def, op2: single_arg); |
986 | } |
987 | else if (src.get_operand (r&: arg_range, expr: single_arg) |
988 | && arg_range.singleton_p ()) |
989 | { |
990 | // Numerical arguments that are a constant can be returned as |
991 | // the constant. This can help fold later cases where even this |
992 | // constant might have been UNDEFINED via an unreachable edge. |
993 | r = arg_range; |
994 | return true; |
995 | } |
996 | } |
997 | |
998 | // If PHI analysis is available, see if there is an iniital range. |
999 | if (phi_analysis_available_p () |
1000 | && irange::supports_p (TREE_TYPE (phi_def))) |
1001 | { |
1002 | phi_group *g = (phi_analysis())[phi_def]; |
1003 | if (g && !(g->range ().varying_p ())) |
1004 | { |
1005 | if (dump_file && (dump_flags & TDF_DETAILS)) |
1006 | { |
1007 | fprintf (stream: dump_file, format: "PHI GROUP query for "); |
1008 | print_generic_expr (dump_file, phi_def, TDF_SLIM); |
1009 | fprintf (stream: dump_file, format: " found : "); |
1010 | g->range ().dump (dump_file); |
1011 | fprintf (stream: dump_file, format: " and adjusted original range from :"); |
1012 | r.dump (dump_file); |
1013 | } |
1014 | r.intersect (g->range ()); |
1015 | if (dump_file && (dump_flags & TDF_DETAILS)) |
1016 | { |
1017 | fprintf (stream: dump_file, format: " to :"); |
1018 | r.dump (dump_file); |
1019 | fprintf (stream: dump_file, format: "\n"); |
1020 | } |
1021 | } |
1022 | } |
1023 | |
1024 | // If SCEV is available, query if this PHI has any known values. |
1025 | if (scev_initialized_p () |
1026 | && !POINTER_TYPE_P (TREE_TYPE (phi_def))) |
1027 | { |
1028 | class loop *l = loop_containing_stmt (stmt: phi); |
1029 | if (l && loop_outer (loop: l)) |
1030 | { |
1031 | value_range loop_range (type); |
1032 | range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src); |
1033 | if (!loop_range.varying_p ()) |
1034 | { |
1035 | if (dump_file && (dump_flags & TDF_DETAILS)) |
1036 | { |
1037 | fprintf (stream: dump_file, format: "Loops range found for "); |
1038 | print_generic_expr (dump_file, phi_def, TDF_SLIM); |
1039 | fprintf (stream: dump_file, format: ": "); |
1040 | loop_range.dump (dump_file); |
1041 | fprintf (stream: dump_file, format: " and calculated range :"); |
1042 | r.dump (dump_file); |
1043 | fprintf (stream: dump_file, format: "\n"); |
1044 | } |
1045 | r.intersect (loop_range); |
1046 | } |
1047 | } |
1048 | } |
1049 | |
1050 | return true; |
1051 | } |
1052 | |
1053 | // Calculate a range for call statement S and return it in R. |
1054 | // If a range cannot be calculated, return false. |
1055 | |
1056 | bool |
1057 | fold_using_range::range_of_call (vrange &r, gcall *call, fur_source &) |
1058 | { |
1059 | tree type = gimple_range_type (s: call); |
1060 | if (!type) |
1061 | return false; |
1062 | |
1063 | tree lhs = gimple_call_lhs (gs: call); |
1064 | bool strict_overflow_p; |
1065 | |
1066 | if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p)) |
1067 | r.set_nonnegative (type); |
1068 | else if (gimple_call_nonnull_result_p (call) |
1069 | || gimple_call_nonnull_arg (call)) |
1070 | r.set_nonzero (type); |
1071 | else |
1072 | r.set_varying (type); |
1073 | |
1074 | tree callee = gimple_call_fndecl (gs: call); |
1075 | if (callee |
1076 | && useless_type_conversion_p (TREE_TYPE (TREE_TYPE (callee)), type)) |
1077 | { |
1078 | value_range val; |
1079 | if (ipa_return_value_range (range&: val, decl: callee)) |
1080 | { |
1081 | r.intersect (val); |
1082 | if (dump_file && (dump_flags & TDF_DETAILS)) |
1083 | { |
1084 | fprintf (stream: dump_file, format: "Using return value range of "); |
1085 | print_generic_expr (dump_file, callee, TDF_SLIM); |
1086 | fprintf (stream: dump_file, format: ": "); |
1087 | val.dump (dump_file); |
1088 | fprintf (stream: dump_file, format: "\n"); |
1089 | } |
1090 | } |
1091 | } |
1092 | |
1093 | // If there is an LHS, intersect that with what is known. |
1094 | if (gimple_range_ssa_p (exp: lhs)) |
1095 | { |
1096 | value_range def (TREE_TYPE (lhs)); |
1097 | gimple_range_global (v&: def, name: lhs); |
1098 | r.intersect (def); |
1099 | } |
1100 | return true; |
1101 | } |
1102 | |
1103 | // Given COND ? OP1 : OP2 with ranges R1 for OP1 and R2 for OP2, Use gori |
1104 | // to further resolve R1 and R2 if there are any dependencies between |
1105 | // OP1 and COND or OP2 and COND. All values can are to be calculated using SRC |
1106 | // as the origination source location for operands.. |
1107 | // Effectively, use COND an the edge condition and solve for OP1 on the true |
1108 | // edge and OP2 on the false edge. |
1109 | |
1110 | bool |
1111 | fold_using_range::condexpr_adjust (vrange &r1, vrange &r2, gimple *, tree cond, |
1112 | tree op1, tree op2, fur_source &src) |
1113 | { |
1114 | if (!src.gori () || !src.gori_ssa ()) |
1115 | return false; |
1116 | |
1117 | tree ssa1 = gimple_range_ssa_p (exp: op1); |
1118 | tree ssa2 = gimple_range_ssa_p (exp: op2); |
1119 | if (!ssa1 && !ssa2) |
1120 | return false; |
1121 | if (TREE_CODE (cond) != SSA_NAME) |
1122 | return false; |
1123 | gassign *cond_def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (cond)); |
1124 | if (!cond_def |
1125 | || TREE_CODE_CLASS (gimple_assign_rhs_code (cond_def)) != tcc_comparison) |
1126 | return false; |
1127 | tree type = TREE_TYPE (gimple_assign_rhs1 (cond_def)); |
1128 | if (!value_range::supports_type_p (type) |
1129 | || !range_compatible_p (type1: type, TREE_TYPE (gimple_assign_rhs2 (cond_def)))) |
1130 | return false; |
1131 | range_op_handler hand (gimple_assign_rhs_code (gs: cond_def)); |
1132 | if (!hand) |
1133 | return false; |
1134 | |
1135 | tree c1 = gimple_range_ssa_p (exp: gimple_assign_rhs1 (gs: cond_def)); |
1136 | tree c2 = gimple_range_ssa_p (exp: gimple_assign_rhs2 (gs: cond_def)); |
1137 | |
1138 | // Only solve if there is one SSA name in the condition. |
1139 | if ((!c1 && !c2) || (c1 && c2)) |
1140 | return false; |
1141 | |
1142 | // Pick up the current values of each part of the condition. |
1143 | tree rhs1 = gimple_assign_rhs1 (gs: cond_def); |
1144 | tree rhs2 = gimple_assign_rhs2 (gs: cond_def); |
1145 | value_range cl (TREE_TYPE (rhs1)); |
1146 | value_range cr (TREE_TYPE (rhs2)); |
1147 | src.get_operand (r&: cl, expr: rhs1); |
1148 | src.get_operand (r&: cr, expr: rhs2); |
1149 | |
1150 | tree cond_name = c1 ? c1 : c2; |
1151 | gimple *def_stmt = SSA_NAME_DEF_STMT (cond_name); |
1152 | |
1153 | // Evaluate the value of COND_NAME on the true and false edges, using either |
1154 | // the op1 or op2 routines based on its location. |
1155 | value_range cond_true (type), cond_false (type); |
1156 | if (c1) |
1157 | { |
1158 | if (!hand.op1_range (r&: cond_false, type, lhs: range_false (), op2: cr)) |
1159 | return false; |
1160 | if (!hand.op1_range (r&: cond_true, type, lhs: range_true (), op2: cr)) |
1161 | return false; |
1162 | cond_false.intersect (r: cl); |
1163 | cond_true.intersect (r: cl); |
1164 | } |
1165 | else |
1166 | { |
1167 | if (!hand.op2_range (r&: cond_false, type, lhs: range_false (), op1: cl)) |
1168 | return false; |
1169 | if (!hand.op2_range (r&: cond_true, type, lhs: range_true (), op1: cl)) |
1170 | return false; |
1171 | cond_false.intersect (r: cr); |
1172 | cond_true.intersect (r: cr); |
1173 | } |
1174 | |
1175 | // Now solve for SSA1 or SSA2 if they are in the dependency chain. |
1176 | if (ssa1 && src.gori_ssa()->in_chain_p (name: ssa1, def: cond_name)) |
1177 | { |
1178 | value_range tmp1 (TREE_TYPE (ssa1)); |
1179 | if (src.gori ()->compute_operand_range (tmp1, def_stmt, cond_true, |
1180 | ssa1, src)) |
1181 | r1.intersect (tmp1); |
1182 | } |
1183 | if (ssa2 && src.gori_ssa ()->in_chain_p (name: ssa2, def: cond_name)) |
1184 | { |
1185 | value_range tmp2 (TREE_TYPE (ssa2)); |
1186 | if (src.gori ()->compute_operand_range (tmp2, def_stmt, cond_false, |
1187 | ssa2, src)) |
1188 | r2.intersect (tmp2); |
1189 | } |
1190 | return true; |
1191 | } |
1192 | |
1193 | // Calculate a range for COND_EXPR statement S and return it in R. |
1194 | // If a range cannot be calculated, return false. |
1195 | |
1196 | bool |
1197 | fold_using_range::range_of_cond_expr (vrange &r, gassign *s, fur_source &src) |
1198 | { |
1199 | tree cond = gimple_assign_rhs1 (gs: s); |
1200 | tree op1 = gimple_assign_rhs2 (gs: s); |
1201 | tree op2 = gimple_assign_rhs3 (gs: s); |
1202 | |
1203 | tree type = gimple_range_type (s); |
1204 | if (!type) |
1205 | return false; |
1206 | |
1207 | value_range range1 (TREE_TYPE (op1)); |
1208 | value_range range2 (TREE_TYPE (op2)); |
1209 | value_range cond_range (TREE_TYPE (cond)); |
1210 | gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR); |
1211 | gcc_checking_assert (range_compatible_p (TREE_TYPE (op1), TREE_TYPE (op2))); |
1212 | src.get_operand (r&: cond_range, expr: cond); |
1213 | src.get_operand (r&: range1, expr: op1); |
1214 | src.get_operand (r&: range2, expr: op2); |
1215 | |
1216 | // Try to see if there is a dependence between the COND and either operand |
1217 | if (condexpr_adjust (r1&: range1, r2&: range2, s, cond, op1, op2, src)) |
1218 | if (dump_file && (dump_flags & TDF_DETAILS)) |
1219 | { |
1220 | fprintf (stream: dump_file, format: "Possible COND_EXPR adjustment. Range op1 : "); |
1221 | range1.dump(dump_file); |
1222 | fprintf (stream: dump_file, format: " and Range op2: "); |
1223 | range2.dump(dump_file); |
1224 | fprintf (stream: dump_file, format: "\n"); |
1225 | } |
1226 | |
1227 | // If the condition is known, choose the appropriate expression. |
1228 | if (cond_range.singleton_p ()) |
1229 | { |
1230 | // False, pick second operand. |
1231 | if (cond_range.zero_p ()) |
1232 | r = range2; |
1233 | else |
1234 | r = range1; |
1235 | } |
1236 | else |
1237 | { |
1238 | r = range1; |
1239 | r.union_ (range2); |
1240 | } |
1241 | gcc_checking_assert (r.undefined_p () |
1242 | || range_compatible_p (r.type (), type)); |
1243 | return true; |
1244 | } |
1245 | |
1246 | // If SCEV has any information about phi node NAME, return it as a range in R. |
1247 | |
1248 | void |
1249 | fold_using_range::range_of_ssa_name_with_loop_info (vrange &r, tree name, |
1250 | class loop *l, gphi *phi, |
1251 | fur_source &src) |
1252 | { |
1253 | gcc_checking_assert (TREE_CODE (name) == SSA_NAME); |
1254 | // SCEV currently invokes get_range_query () for values. If the query |
1255 | // being passed in is not the same SCEV will use, do not invoke SCEV. |
1256 | // This can be remove if/when SCEV uses a passed in range-query. |
1257 | if (src.query () != get_range_query (cfun)) |
1258 | { |
1259 | r.set_varying (TREE_TYPE (name)); |
1260 | // Report the msmatch if SRC is not the global query. The cache |
1261 | // uses a global query and would provide numerous false positives. |
1262 | if (dump_file && (dump_flags & TDF_DETAILS) |
1263 | && src.query () != get_global_range_query ()) |
1264 | fprintf (stream: dump_file, |
1265 | format: "fold_using-range:: SCEV not invoked due to mismatched queries\n"); |
1266 | } |
1267 | else if (!range_of_var_in_loop (r, var: name, l, phi, src.query ())) |
1268 | r.set_varying (TREE_TYPE (name)); |
1269 | } |
1270 | |
1271 | // ----------------------------------------------------------------------- |
1272 | |
1273 | // Check if an && or || expression can be folded based on relations. ie |
1274 | // c_2 = a_6 > b_7 |
1275 | // c_3 = a_6 < b_7 |
1276 | // c_4 = c_2 && c_3 |
1277 | // c_2 and c_3 can never be true at the same time, |
1278 | // Therefore c_4 can always resolve to false based purely on the relations. |
1279 | |
1280 | void |
1281 | fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s, |
1282 | fur_source &src, vrange &op1, |
1283 | vrange &op2) |
1284 | { |
1285 | // No queries or already folded. |
1286 | if (!src.gori () || lhs_range.singleton_p ()) |
1287 | return; |
1288 | |
1289 | // Only care about AND and OR expressions. |
1290 | enum tree_code code = gimple_expr_code (stmt: s); |
1291 | bool is_and = false; |
1292 | if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR) |
1293 | is_and = true; |
1294 | else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR) |
1295 | return; |
1296 | |
1297 | gimple_range_op_handler handler (s); |
1298 | tree lhs = handler.lhs (); |
1299 | tree ssa1 = gimple_range_ssa_p (exp: handler.operand1 ()); |
1300 | tree ssa2 = gimple_range_ssa_p (exp: handler.operand2 ()); |
1301 | |
1302 | // Deal with || and && only when there is a full set of symbolics. |
1303 | if (!lhs || !ssa1 || !ssa2 |
1304 | || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE) |
1305 | || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE) |
1306 | || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE)) |
1307 | return; |
1308 | |
1309 | // Now we know its a boolean AND or OR expression with boolean operands. |
1310 | // Ideally we search dependencies for common names, and see what pops out. |
1311 | // until then, simply try to resolve direct dependencies. |
1312 | |
1313 | gimple *ssa1_stmt = SSA_NAME_DEF_STMT (ssa1); |
1314 | gimple *ssa2_stmt = SSA_NAME_DEF_STMT (ssa2); |
1315 | |
1316 | gimple_range_op_handler handler1 (ssa1_stmt); |
1317 | gimple_range_op_handler handler2 (ssa2_stmt); |
1318 | |
1319 | // If either handler is not present, no relation can be found. |
1320 | if (!handler1 || !handler2) |
1321 | return; |
1322 | |
1323 | // Both stmts will need to have 2 ssa names in the stmt. |
1324 | tree ssa1_dep1 = gimple_range_ssa_p (exp: handler1.operand1 ()); |
1325 | tree ssa1_dep2 = gimple_range_ssa_p (exp: handler1.operand2 ()); |
1326 | tree ssa2_dep1 = gimple_range_ssa_p (exp: handler2.operand1 ()); |
1327 | tree ssa2_dep2 = gimple_range_ssa_p (exp: handler2.operand2 ()); |
1328 | |
1329 | if (!ssa1_dep1 || !ssa1_dep2 || !ssa2_dep1 || !ssa2_dep2) |
1330 | return; |
1331 | |
1332 | if (HONOR_NANS (TREE_TYPE (ssa1_dep1))) |
1333 | return; |
1334 | |
1335 | // Make sure they are the same dependencies, and detect the order of the |
1336 | // relationship. |
1337 | bool reverse_op2 = true; |
1338 | if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2) |
1339 | reverse_op2 = false; |
1340 | else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1) |
1341 | return; |
1342 | |
1343 | int_range<2> bool_one = range_true (); |
1344 | relation_kind relation1 = handler1.op1_op2_relation (lhs: bool_one, op1, op2); |
1345 | relation_kind relation2 = handler2.op1_op2_relation (lhs: bool_one, op1, op2); |
1346 | if (relation1 == VREL_VARYING || relation2 == VREL_VARYING) |
1347 | return; |
1348 | |
1349 | if (reverse_op2) |
1350 | relation2 = relation_negate (r: relation2); |
1351 | |
1352 | // x && y is false if the relation intersection of the true cases is NULL. |
1353 | if (is_and && relation_intersect (r1: relation1, r2: relation2) == VREL_UNDEFINED) |
1354 | lhs_range = range_false (boolean_type_node); |
1355 | // x || y is true if the union of the true cases is NO-RELATION.. |
1356 | // ie, one or the other being true covers the full range of possibilities. |
1357 | else if (!is_and && relation_union (r1: relation1, r2: relation2) == VREL_VARYING) |
1358 | lhs_range = bool_one; |
1359 | else |
1360 | return; |
1361 | |
1362 | range_cast (r&: lhs_range, TREE_TYPE (lhs)); |
1363 | if (dump_file && (dump_flags & TDF_DETAILS)) |
1364 | { |
1365 | fprintf (stream: dump_file, format: " Relation adjustment: "); |
1366 | print_generic_expr (dump_file, ssa1, TDF_SLIM); |
1367 | fprintf (stream: dump_file, format: " and "); |
1368 | print_generic_expr (dump_file, ssa2, TDF_SLIM); |
1369 | fprintf (stream: dump_file, format: " combine to produce "); |
1370 | lhs_range.dump (dump_file); |
1371 | fputc (c: '\n', stream: dump_file); |
1372 | } |
1373 | |
1374 | return; |
1375 | } |
1376 | |
1377 | // Register any outgoing edge relations from a conditional branch. |
1378 | |
1379 | void |
1380 | fur_source::register_outgoing_edges (gcond *s, irange &lhs_range, |
1381 | edge e0, edge e1) |
1382 | { |
1383 | int_range<2> e0_range, e1_range; |
1384 | tree name; |
1385 | basic_block bb = gimple_bb (g: s); |
1386 | |
1387 | gimple_range_op_handler handler (s); |
1388 | if (!handler) |
1389 | return; |
1390 | |
1391 | if (e0) |
1392 | { |
1393 | // If this edge is never taken, ignore it. |
1394 | gcond_edge_range (r&: e0_range, e: e0); |
1395 | e0_range.intersect (lhs_range); |
1396 | if (e0_range.undefined_p ()) |
1397 | e0 = NULL; |
1398 | } |
1399 | |
1400 | if (e1) |
1401 | { |
1402 | // If this edge is never taken, ignore it. |
1403 | gcond_edge_range (r&: e1_range, e: e1); |
1404 | e1_range.intersect (lhs_range); |
1405 | if (e1_range.undefined_p ()) |
1406 | e1 = NULL; |
1407 | } |
1408 | |
1409 | if (!e0 && !e1) |
1410 | return; |
1411 | |
1412 | // First, register the gcond itself. This will catch statements like |
1413 | // if (a_2 < b_5) |
1414 | tree ssa1 = gimple_range_ssa_p (exp: handler.operand1 ()); |
1415 | tree ssa2 = gimple_range_ssa_p (exp: handler.operand2 ()); |
1416 | value_range r1,r2; |
1417 | if (ssa1 && ssa2) |
1418 | { |
1419 | r1.set_varying (TREE_TYPE (ssa1)); |
1420 | r2.set_varying (TREE_TYPE (ssa2)); |
1421 | if (e0) |
1422 | { |
1423 | relation_kind relation = handler.op1_op2_relation (lhs: e0_range, op1: r1, op2: r2); |
1424 | if (relation != VREL_VARYING) |
1425 | register_relation (e: e0, k: relation, op1: ssa1, op2: ssa2); |
1426 | } |
1427 | if (e1) |
1428 | { |
1429 | relation_kind relation = handler.op1_op2_relation (lhs: e1_range, op1: r1, op2: r2); |
1430 | if (relation != VREL_VARYING) |
1431 | register_relation (e: e1, k: relation, op1: ssa1, op2: ssa2); |
1432 | } |
1433 | } |
1434 | |
1435 | // Outgoing relations of GORI exports require a gori engine. |
1436 | if (!gori_ssa ()) |
1437 | return; |
1438 | |
1439 | // Now look for other relations in the exports. This will find stmts |
1440 | // leading to the condition such as: |
1441 | // c_2 = a_4 < b_7 |
1442 | // if (c_2) |
1443 | FOR_EACH_GORI_EXPORT_NAME (gori_ssa (), bb, name) |
1444 | { |
1445 | if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE) |
1446 | continue; |
1447 | gimple *stmt = SSA_NAME_DEF_STMT (name); |
1448 | gimple_range_op_handler handler (stmt); |
1449 | if (!handler) |
1450 | continue; |
1451 | tree ssa1 = gimple_range_ssa_p (exp: handler.operand1 ()); |
1452 | tree ssa2 = gimple_range_ssa_p (exp: handler.operand2 ()); |
1453 | value_range r (TREE_TYPE (name)); |
1454 | if (ssa1 && ssa2) |
1455 | { |
1456 | r1.set_varying (TREE_TYPE (ssa1)); |
1457 | r2.set_varying (TREE_TYPE (ssa2)); |
1458 | if (e0 && gori ()->edge_range_p (r, e0, name, *m_query) |
1459 | && r.singleton_p ()) |
1460 | { |
1461 | relation_kind relation = handler.op1_op2_relation (lhs: r, op1: r1, op2: r2); |
1462 | if (relation != VREL_VARYING) |
1463 | register_relation (e: e0, k: relation, op1: ssa1, op2: ssa2); |
1464 | } |
1465 | if (e1 && gori ()->edge_range_p (r, e1, name, *m_query) |
1466 | && r.singleton_p ()) |
1467 | { |
1468 | relation_kind relation = handler.op1_op2_relation (lhs: r, op1: r1, op2: r2); |
1469 | if (relation != VREL_VARYING) |
1470 | register_relation (e: e1, k: relation, op1: ssa1, op2: ssa2); |
1471 | } |
1472 | } |
1473 | } |
1474 | } |
1475 |
Definitions
- fur_source
- get_operand
- get_phi_operand
- query_relation
- register_relation
- register_relation
- get_operand
- get_phi_operand
- fur_stmt
- get_operand
- get_phi_operand
- query_relation
- fur_depend
- register_relation
- register_relation
- fur_list
- fur_list
- fur_list
- fur_list
- get_operand
- get_phi_operand
- fold_range
- fold_range
- fold_range
- fold_range
- fold_range
- op1_range
- op1_range
- op2_range
- op2_range
- fur_relation
- fur_relation
- trio
- register_relation
- register_relation
- fold_relations
- adjust_pointer_diff_expr
- adjust_imagpart_expr
- adjust_realpart_expr
- gimple_range_adjustment
- fold_stmt
- range_of_range_op
- range_of_address
- range_of_phi
- range_of_call
- condexpr_adjust
- range_of_cond_expr
- range_of_ssa_name_with_loop_info
- relation_fold_and_or
Improve your Profiling and Debugging skills
Find out more