1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Linux Socket Filter Data Structures
4 */
5#ifndef __LINUX_FILTER_H__
6#define __LINUX_FILTER_H__
7
8#include <linux/atomic.h>
9#include <linux/bpf.h>
10#include <linux/refcount.h>
11#include <linux/compat.h>
12#include <linux/skbuff.h>
13#include <linux/linkage.h>
14#include <linux/printk.h>
15#include <linux/workqueue.h>
16#include <linux/sched.h>
17#include <linux/sched/clock.h>
18#include <linux/capability.h>
19#include <linux/set_memory.h>
20#include <linux/kallsyms.h>
21#include <linux/if_vlan.h>
22#include <linux/vmalloc.h>
23#include <linux/sockptr.h>
24#include <crypto/sha1.h>
25#include <linux/u64_stats_sync.h>
26
27#include <net/sch_generic.h>
28
29#include <asm/byteorder.h>
30#include <uapi/linux/filter.h>
31
32struct sk_buff;
33struct sock;
34struct seccomp_data;
35struct bpf_prog_aux;
36struct xdp_rxq_info;
37struct xdp_buff;
38struct sock_reuseport;
39struct ctl_table;
40struct ctl_table_header;
41
42/* ArgX, context and stack frame pointer register positions. Note,
43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44 * calls in BPF_CALL instruction.
45 */
46#define BPF_REG_ARG1 BPF_REG_1
47#define BPF_REG_ARG2 BPF_REG_2
48#define BPF_REG_ARG3 BPF_REG_3
49#define BPF_REG_ARG4 BPF_REG_4
50#define BPF_REG_ARG5 BPF_REG_5
51#define BPF_REG_CTX BPF_REG_6
52#define BPF_REG_FP BPF_REG_10
53
54/* Additional register mappings for converted user programs. */
55#define BPF_REG_A BPF_REG_0
56#define BPF_REG_X BPF_REG_7
57#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
58#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
59#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
60
61/* Kernel hidden auxiliary/helper register. */
62#define BPF_REG_AX MAX_BPF_REG
63#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
64#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
65
66/* unused opcode to mark special call to bpf_tail_call() helper */
67#define BPF_TAIL_CALL 0xf0
68
69/* unused opcode to mark special load instruction. Same as BPF_ABS */
70#define BPF_PROBE_MEM 0x20
71
72/* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73#define BPF_PROBE_MEMSX 0x40
74
75/* unused opcode to mark special load instruction. Same as BPF_MSH */
76#define BPF_PROBE_MEM32 0xa0
77
78/* unused opcode to mark call to interpreter with arguments */
79#define BPF_CALL_ARGS 0xe0
80
81/* unused opcode to mark speculation barrier for mitigating
82 * Speculative Store Bypass
83 */
84#define BPF_NOSPEC 0xc0
85
86/* As per nm, we expose JITed images as text (code) section for
87 * kallsyms. That way, tools like perf can find it to match
88 * addresses.
89 */
90#define BPF_SYM_ELF_TYPE 't'
91
92/* BPF program can access up to 512 bytes of stack space. */
93#define MAX_BPF_STACK 512
94
95/* Helper macros for filter block array initializers. */
96
97/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
98
99#define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \
100 ((struct bpf_insn) { \
101 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
102 .dst_reg = DST, \
103 .src_reg = SRC, \
104 .off = OFF, \
105 .imm = 0 })
106
107#define BPF_ALU64_REG(OP, DST, SRC) \
108 BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
109
110#define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \
111 ((struct bpf_insn) { \
112 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
113 .dst_reg = DST, \
114 .src_reg = SRC, \
115 .off = OFF, \
116 .imm = 0 })
117
118#define BPF_ALU32_REG(OP, DST, SRC) \
119 BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
120
121/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
122
123#define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \
124 ((struct bpf_insn) { \
125 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
126 .dst_reg = DST, \
127 .src_reg = 0, \
128 .off = OFF, \
129 .imm = IMM })
130#define BPF_ALU64_IMM(OP, DST, IMM) \
131 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
132
133#define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \
134 ((struct bpf_insn) { \
135 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
136 .dst_reg = DST, \
137 .src_reg = 0, \
138 .off = OFF, \
139 .imm = IMM })
140#define BPF_ALU32_IMM(OP, DST, IMM) \
141 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
142
143/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
144
145#define BPF_ENDIAN(TYPE, DST, LEN) \
146 ((struct bpf_insn) { \
147 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
148 .dst_reg = DST, \
149 .src_reg = 0, \
150 .off = 0, \
151 .imm = LEN })
152
153/* Byte Swap, bswap16/32/64 */
154
155#define BPF_BSWAP(DST, LEN) \
156 ((struct bpf_insn) { \
157 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \
158 .dst_reg = DST, \
159 .src_reg = 0, \
160 .off = 0, \
161 .imm = LEN })
162
163/* Short form of mov, dst_reg = src_reg */
164
165#define BPF_MOV64_REG(DST, SRC) \
166 ((struct bpf_insn) { \
167 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
168 .dst_reg = DST, \
169 .src_reg = SRC, \
170 .off = 0, \
171 .imm = 0 })
172
173#define BPF_MOV32_REG(DST, SRC) \
174 ((struct bpf_insn) { \
175 .code = BPF_ALU | BPF_MOV | BPF_X, \
176 .dst_reg = DST, \
177 .src_reg = SRC, \
178 .off = 0, \
179 .imm = 0 })
180
181/* Short form of mov, dst_reg = imm32 */
182
183#define BPF_MOV64_IMM(DST, IMM) \
184 ((struct bpf_insn) { \
185 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
186 .dst_reg = DST, \
187 .src_reg = 0, \
188 .off = 0, \
189 .imm = IMM })
190
191#define BPF_MOV32_IMM(DST, IMM) \
192 ((struct bpf_insn) { \
193 .code = BPF_ALU | BPF_MOV | BPF_K, \
194 .dst_reg = DST, \
195 .src_reg = 0, \
196 .off = 0, \
197 .imm = IMM })
198
199/* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
200
201#define BPF_MOVSX64_REG(DST, SRC, OFF) \
202 ((struct bpf_insn) { \
203 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
204 .dst_reg = DST, \
205 .src_reg = SRC, \
206 .off = OFF, \
207 .imm = 0 })
208
209#define BPF_MOVSX32_REG(DST, SRC, OFF) \
210 ((struct bpf_insn) { \
211 .code = BPF_ALU | BPF_MOV | BPF_X, \
212 .dst_reg = DST, \
213 .src_reg = SRC, \
214 .off = OFF, \
215 .imm = 0 })
216
217/* Special form of mov32, used for doing explicit zero extension on dst. */
218#define BPF_ZEXT_REG(DST) \
219 ((struct bpf_insn) { \
220 .code = BPF_ALU | BPF_MOV | BPF_X, \
221 .dst_reg = DST, \
222 .src_reg = DST, \
223 .off = 0, \
224 .imm = 1 })
225
226static inline bool insn_is_zext(const struct bpf_insn *insn)
227{
228 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
229}
230
231/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
232#define BPF_LD_IMM64(DST, IMM) \
233 BPF_LD_IMM64_RAW(DST, 0, IMM)
234
235#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
236 ((struct bpf_insn) { \
237 .code = BPF_LD | BPF_DW | BPF_IMM, \
238 .dst_reg = DST, \
239 .src_reg = SRC, \
240 .off = 0, \
241 .imm = (__u32) (IMM) }), \
242 ((struct bpf_insn) { \
243 .code = 0, /* zero is reserved opcode */ \
244 .dst_reg = 0, \
245 .src_reg = 0, \
246 .off = 0, \
247 .imm = ((__u64) (IMM)) >> 32 })
248
249/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
250#define BPF_LD_MAP_FD(DST, MAP_FD) \
251 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
252
253/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
254
255#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
256 ((struct bpf_insn) { \
257 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
258 .dst_reg = DST, \
259 .src_reg = SRC, \
260 .off = 0, \
261 .imm = IMM })
262
263#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
264 ((struct bpf_insn) { \
265 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
266 .dst_reg = DST, \
267 .src_reg = SRC, \
268 .off = 0, \
269 .imm = IMM })
270
271/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
272
273#define BPF_LD_ABS(SIZE, IMM) \
274 ((struct bpf_insn) { \
275 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
276 .dst_reg = 0, \
277 .src_reg = 0, \
278 .off = 0, \
279 .imm = IMM })
280
281/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
282
283#define BPF_LD_IND(SIZE, SRC, IMM) \
284 ((struct bpf_insn) { \
285 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
286 .dst_reg = 0, \
287 .src_reg = SRC, \
288 .off = 0, \
289 .imm = IMM })
290
291/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
292
293#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
294 ((struct bpf_insn) { \
295 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
296 .dst_reg = DST, \
297 .src_reg = SRC, \
298 .off = OFF, \
299 .imm = 0 })
300
301/* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
302
303#define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \
304 ((struct bpf_insn) { \
305 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \
306 .dst_reg = DST, \
307 .src_reg = SRC, \
308 .off = OFF, \
309 .imm = 0 })
310
311/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
312
313#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
314 ((struct bpf_insn) { \
315 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
316 .dst_reg = DST, \
317 .src_reg = SRC, \
318 .off = OFF, \
319 .imm = 0 })
320
321
322/*
323 * Atomic operations:
324 *
325 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg
326 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg
327 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg
328 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg
329 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
330 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
331 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
332 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
333 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg)
334 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
335 */
336
337#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \
338 ((struct bpf_insn) { \
339 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
340 .dst_reg = DST, \
341 .src_reg = SRC, \
342 .off = OFF, \
343 .imm = OP })
344
345/* Legacy alias */
346#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
347
348/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
349
350#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
351 ((struct bpf_insn) { \
352 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
353 .dst_reg = DST, \
354 .src_reg = 0, \
355 .off = OFF, \
356 .imm = IMM })
357
358/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
359
360#define BPF_JMP_REG(OP, DST, SRC, OFF) \
361 ((struct bpf_insn) { \
362 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
363 .dst_reg = DST, \
364 .src_reg = SRC, \
365 .off = OFF, \
366 .imm = 0 })
367
368/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
369
370#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
371 ((struct bpf_insn) { \
372 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
373 .dst_reg = DST, \
374 .src_reg = 0, \
375 .off = OFF, \
376 .imm = IMM })
377
378/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
379
380#define BPF_JMP32_REG(OP, DST, SRC, OFF) \
381 ((struct bpf_insn) { \
382 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
383 .dst_reg = DST, \
384 .src_reg = SRC, \
385 .off = OFF, \
386 .imm = 0 })
387
388/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
389
390#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
391 ((struct bpf_insn) { \
392 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
393 .dst_reg = DST, \
394 .src_reg = 0, \
395 .off = OFF, \
396 .imm = IMM })
397
398/* Unconditional jumps, goto pc + off16 */
399
400#define BPF_JMP_A(OFF) \
401 ((struct bpf_insn) { \
402 .code = BPF_JMP | BPF_JA, \
403 .dst_reg = 0, \
404 .src_reg = 0, \
405 .off = OFF, \
406 .imm = 0 })
407
408/* Relative call */
409
410#define BPF_CALL_REL(TGT) \
411 ((struct bpf_insn) { \
412 .code = BPF_JMP | BPF_CALL, \
413 .dst_reg = 0, \
414 .src_reg = BPF_PSEUDO_CALL, \
415 .off = 0, \
416 .imm = TGT })
417
418/* Convert function address to BPF immediate */
419
420#define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base)
421
422#define BPF_EMIT_CALL(FUNC) \
423 ((struct bpf_insn) { \
424 .code = BPF_JMP | BPF_CALL, \
425 .dst_reg = 0, \
426 .src_reg = 0, \
427 .off = 0, \
428 .imm = BPF_CALL_IMM(FUNC) })
429
430/* Raw code statement block */
431
432#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
433 ((struct bpf_insn) { \
434 .code = CODE, \
435 .dst_reg = DST, \
436 .src_reg = SRC, \
437 .off = OFF, \
438 .imm = IMM })
439
440/* Program exit */
441
442#define BPF_EXIT_INSN() \
443 ((struct bpf_insn) { \
444 .code = BPF_JMP | BPF_EXIT, \
445 .dst_reg = 0, \
446 .src_reg = 0, \
447 .off = 0, \
448 .imm = 0 })
449
450/* Speculation barrier */
451
452#define BPF_ST_NOSPEC() \
453 ((struct bpf_insn) { \
454 .code = BPF_ST | BPF_NOSPEC, \
455 .dst_reg = 0, \
456 .src_reg = 0, \
457 .off = 0, \
458 .imm = 0 })
459
460/* Internal classic blocks for direct assignment */
461
462#define __BPF_STMT(CODE, K) \
463 ((struct sock_filter) BPF_STMT(CODE, K))
464
465#define __BPF_JUMP(CODE, K, JT, JF) \
466 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
467
468#define bytes_to_bpf_size(bytes) \
469({ \
470 int bpf_size = -EINVAL; \
471 \
472 if (bytes == sizeof(u8)) \
473 bpf_size = BPF_B; \
474 else if (bytes == sizeof(u16)) \
475 bpf_size = BPF_H; \
476 else if (bytes == sizeof(u32)) \
477 bpf_size = BPF_W; \
478 else if (bytes == sizeof(u64)) \
479 bpf_size = BPF_DW; \
480 \
481 bpf_size; \
482})
483
484#define bpf_size_to_bytes(bpf_size) \
485({ \
486 int bytes = -EINVAL; \
487 \
488 if (bpf_size == BPF_B) \
489 bytes = sizeof(u8); \
490 else if (bpf_size == BPF_H) \
491 bytes = sizeof(u16); \
492 else if (bpf_size == BPF_W) \
493 bytes = sizeof(u32); \
494 else if (bpf_size == BPF_DW) \
495 bytes = sizeof(u64); \
496 \
497 bytes; \
498})
499
500#define BPF_SIZEOF(type) \
501 ({ \
502 const int __size = bytes_to_bpf_size(sizeof(type)); \
503 BUILD_BUG_ON(__size < 0); \
504 __size; \
505 })
506
507#define BPF_FIELD_SIZEOF(type, field) \
508 ({ \
509 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
510 BUILD_BUG_ON(__size < 0); \
511 __size; \
512 })
513
514#define BPF_LDST_BYTES(insn) \
515 ({ \
516 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
517 WARN_ON(__size < 0); \
518 __size; \
519 })
520
521#define __BPF_MAP_0(m, v, ...) v
522#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
523#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
524#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
525#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
526#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
527
528#define __BPF_REG_0(...) __BPF_PAD(5)
529#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
530#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
531#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
532#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
533#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
534
535#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
536#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
537
538#define __BPF_CAST(t, a) \
539 (__force t) \
540 (__force \
541 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
542 (unsigned long)0, (t)0))) a
543#define __BPF_V void
544#define __BPF_N
545
546#define __BPF_DECL_ARGS(t, a) t a
547#define __BPF_DECL_REGS(t, a) u64 a
548
549#define __BPF_PAD(n) \
550 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
551 u64, __ur_3, u64, __ur_4, u64, __ur_5)
552
553#define BPF_CALL_x(x, attr, name, ...) \
554 static __always_inline \
555 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
556 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
557 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
558 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
559 { \
560 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
561 } \
562 static __always_inline \
563 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
564
565#define __NOATTR
566#define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
567#define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
568#define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
569#define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
570#define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
571#define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
572
573#define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__)
574
575#define bpf_ctx_range(TYPE, MEMBER) \
576 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
577#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
578 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
579#if BITS_PER_LONG == 64
580# define bpf_ctx_range_ptr(TYPE, MEMBER) \
581 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
582#else
583# define bpf_ctx_range_ptr(TYPE, MEMBER) \
584 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
585#endif /* BITS_PER_LONG == 64 */
586
587#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
588 ({ \
589 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \
590 *(PTR_SIZE) = (SIZE); \
591 offsetof(TYPE, MEMBER); \
592 })
593
594/* A struct sock_filter is architecture independent. */
595struct compat_sock_fprog {
596 u16 len;
597 compat_uptr_t filter; /* struct sock_filter * */
598};
599
600struct sock_fprog_kern {
601 u16 len;
602 struct sock_filter *filter;
603};
604
605/* Some arches need doubleword alignment for their instructions and/or data */
606#define BPF_IMAGE_ALIGNMENT 8
607
608struct bpf_binary_header {
609 u32 size;
610 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
611};
612
613struct bpf_prog_stats {
614 u64_stats_t cnt;
615 u64_stats_t nsecs;
616 u64_stats_t misses;
617 struct u64_stats_sync syncp;
618} __aligned(2 * sizeof(u64));
619
620struct sk_filter {
621 refcount_t refcnt;
622 struct rcu_head rcu;
623 struct bpf_prog *prog;
624};
625
626DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
627
628extern struct mutex nf_conn_btf_access_lock;
629extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
630 const struct bpf_reg_state *reg,
631 int off, int size);
632
633typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
634 const struct bpf_insn *insnsi,
635 unsigned int (*bpf_func)(const void *,
636 const struct bpf_insn *));
637
638static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
639 const void *ctx,
640 bpf_dispatcher_fn dfunc)
641{
642 u32 ret;
643
644 cant_migrate();
645 if (static_branch_unlikely(&bpf_stats_enabled_key)) {
646 struct bpf_prog_stats *stats;
647 u64 start = sched_clock();
648 unsigned long flags;
649
650 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
651 stats = this_cpu_ptr(prog->stats);
652 flags = u64_stats_update_begin_irqsave(syncp: &stats->syncp);
653 u64_stats_inc(p: &stats->cnt);
654 u64_stats_add(p: &stats->nsecs, val: sched_clock() - start);
655 u64_stats_update_end_irqrestore(syncp: &stats->syncp, flags);
656 } else {
657 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
658 }
659 return ret;
660}
661
662static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
663{
664 return __bpf_prog_run(prog, ctx, dfunc: bpf_dispatcher_nop_func);
665}
666
667/*
668 * Use in preemptible and therefore migratable context to make sure that
669 * the execution of the BPF program runs on one CPU.
670 *
671 * This uses migrate_disable/enable() explicitly to document that the
672 * invocation of a BPF program does not require reentrancy protection
673 * against a BPF program which is invoked from a preempting task.
674 */
675static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
676 const void *ctx)
677{
678 u32 ret;
679
680 migrate_disable();
681 ret = bpf_prog_run(prog, ctx);
682 migrate_enable();
683 return ret;
684}
685
686#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
687
688struct bpf_skb_data_end {
689 struct qdisc_skb_cb qdisc_cb;
690 void *data_meta;
691 void *data_end;
692};
693
694struct bpf_nh_params {
695 u32 nh_family;
696 union {
697 u32 ipv4_nh;
698 struct in6_addr ipv6_nh;
699 };
700};
701
702struct bpf_redirect_info {
703 u64 tgt_index;
704 void *tgt_value;
705 struct bpf_map *map;
706 u32 flags;
707 u32 kern_flags;
708 u32 map_id;
709 enum bpf_map_type map_type;
710 struct bpf_nh_params nh;
711};
712
713DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
714
715/* flags for bpf_redirect_info kern_flags */
716#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
717
718/* Compute the linear packet data range [data, data_end) which
719 * will be accessed by various program types (cls_bpf, act_bpf,
720 * lwt, ...). Subsystems allowing direct data access must (!)
721 * ensure that cb[] area can be written to when BPF program is
722 * invoked (otherwise cb[] save/restore is necessary).
723 */
724static inline void bpf_compute_data_pointers(struct sk_buff *skb)
725{
726 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
727
728 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
729 cb->data_meta = skb->data - skb_metadata_len(skb);
730 cb->data_end = skb->data + skb_headlen(skb);
731}
732
733/* Similar to bpf_compute_data_pointers(), except that save orginal
734 * data in cb->data and cb->meta_data for restore.
735 */
736static inline void bpf_compute_and_save_data_end(
737 struct sk_buff *skb, void **saved_data_end)
738{
739 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
740
741 *saved_data_end = cb->data_end;
742 cb->data_end = skb->data + skb_headlen(skb);
743}
744
745/* Restore data saved by bpf_compute_and_save_data_end(). */
746static inline void bpf_restore_data_end(
747 struct sk_buff *skb, void *saved_data_end)
748{
749 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
750
751 cb->data_end = saved_data_end;
752}
753
754static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
755{
756 /* eBPF programs may read/write skb->cb[] area to transfer meta
757 * data between tail calls. Since this also needs to work with
758 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
759 *
760 * In some socket filter cases, the cb unfortunately needs to be
761 * saved/restored so that protocol specific skb->cb[] data won't
762 * be lost. In any case, due to unpriviledged eBPF programs
763 * attached to sockets, we need to clear the bpf_skb_cb() area
764 * to not leak previous contents to user space.
765 */
766 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
767 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
768 sizeof_field(struct qdisc_skb_cb, data));
769
770 return qdisc_skb_cb(skb)->data;
771}
772
773/* Must be invoked with migration disabled */
774static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
775 const void *ctx)
776{
777 const struct sk_buff *skb = ctx;
778 u8 *cb_data = bpf_skb_cb(skb);
779 u8 cb_saved[BPF_SKB_CB_LEN];
780 u32 res;
781
782 if (unlikely(prog->cb_access)) {
783 memcpy(cb_saved, cb_data, sizeof(cb_saved));
784 memset(cb_data, 0, sizeof(cb_saved));
785 }
786
787 res = bpf_prog_run(prog, ctx: skb);
788
789 if (unlikely(prog->cb_access))
790 memcpy(cb_data, cb_saved, sizeof(cb_saved));
791
792 return res;
793}
794
795static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
796 struct sk_buff *skb)
797{
798 u32 res;
799
800 migrate_disable();
801 res = __bpf_prog_run_save_cb(prog, ctx: skb);
802 migrate_enable();
803 return res;
804}
805
806static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
807 struct sk_buff *skb)
808{
809 u8 *cb_data = bpf_skb_cb(skb);
810 u32 res;
811
812 if (unlikely(prog->cb_access))
813 memset(cb_data, 0, BPF_SKB_CB_LEN);
814
815 res = bpf_prog_run_pin_on_cpu(prog, ctx: skb);
816 return res;
817}
818
819DECLARE_BPF_DISPATCHER(xdp)
820
821DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
822
823u32 xdp_master_redirect(struct xdp_buff *xdp);
824
825void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
826
827static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
828{
829 return prog->len * sizeof(struct bpf_insn);
830}
831
832static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
833{
834 return round_up(bpf_prog_insn_size(prog) +
835 sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
836}
837
838static inline unsigned int bpf_prog_size(unsigned int proglen)
839{
840 return max(sizeof(struct bpf_prog),
841 offsetof(struct bpf_prog, insns[proglen]));
842}
843
844static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
845{
846 /* When classic BPF programs have been loaded and the arch
847 * does not have a classic BPF JIT (anymore), they have been
848 * converted via bpf_migrate_filter() to eBPF and thus always
849 * have an unspec program type.
850 */
851 return prog->type == BPF_PROG_TYPE_UNSPEC;
852}
853
854static inline u32 bpf_ctx_off_adjust_machine(u32 size)
855{
856 const u32 size_machine = sizeof(unsigned long);
857
858 if (size > size_machine && size % size_machine == 0)
859 size = size_machine;
860
861 return size;
862}
863
864static inline bool
865bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
866{
867 return size <= size_default && (size & (size - 1)) == 0;
868}
869
870static inline u8
871bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
872{
873 u8 access_off = off & (size_default - 1);
874
875#ifdef __LITTLE_ENDIAN
876 return access_off;
877#else
878 return size_default - (access_off + size);
879#endif
880}
881
882#define bpf_ctx_wide_access_ok(off, size, type, field) \
883 (size == sizeof(__u64) && \
884 off >= offsetof(type, field) && \
885 off + sizeof(__u64) <= offsetofend(type, field) && \
886 off % sizeof(__u64) == 0)
887
888#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
889
890static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
891{
892#ifndef CONFIG_BPF_JIT_ALWAYS_ON
893 if (!fp->jited) {
894 set_vm_flush_reset_perms(fp);
895 set_memory_ro((unsigned long)fp, fp->pages);
896 }
897#endif
898}
899
900static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
901{
902 set_vm_flush_reset_perms(hdr);
903 set_memory_rox(addr: (unsigned long)hdr, numpages: hdr->size >> PAGE_SHIFT);
904}
905
906int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
907static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
908{
909 return sk_filter_trim_cap(sk, skb, cap: 1);
910}
911
912struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
913void bpf_prog_free(struct bpf_prog *fp);
914
915bool bpf_opcode_in_insntable(u8 code);
916
917void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
918 const u32 *insn_to_jit_off);
919int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
920void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
921
922struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
923struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
924struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
925 gfp_t gfp_extra_flags);
926void __bpf_prog_free(struct bpf_prog *fp);
927
928static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
929{
930 __bpf_prog_free(fp);
931}
932
933typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
934 unsigned int flen);
935
936int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
937int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
938 bpf_aux_classic_check_t trans, bool save_orig);
939void bpf_prog_destroy(struct bpf_prog *fp);
940
941int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
942int sk_attach_bpf(u32 ufd, struct sock *sk);
943int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
944int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
945void sk_reuseport_prog_free(struct bpf_prog *prog);
946int sk_detach_filter(struct sock *sk);
947int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
948
949bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
950void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
951
952u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
953#define __bpf_call_base_args \
954 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
955 (void *)__bpf_call_base)
956
957struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
958void bpf_jit_compile(struct bpf_prog *prog);
959bool bpf_jit_needs_zext(void);
960bool bpf_jit_supports_subprog_tailcalls(void);
961bool bpf_jit_supports_kfunc_call(void);
962bool bpf_jit_supports_far_kfunc_call(void);
963bool bpf_jit_supports_exceptions(void);
964bool bpf_jit_supports_ptr_xchg(void);
965bool bpf_jit_supports_arena(void);
966void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
967bool bpf_helper_changes_pkt_data(void *func);
968
969static inline bool bpf_dump_raw_ok(const struct cred *cred)
970{
971 /* Reconstruction of call-sites is dependent on kallsyms,
972 * thus make dump the same restriction.
973 */
974 return kallsyms_show_value(cred);
975}
976
977struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
978 const struct bpf_insn *patch, u32 len);
979int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
980
981void bpf_clear_redirect_map(struct bpf_map *map);
982
983static inline bool xdp_return_frame_no_direct(void)
984{
985 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
986
987 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
988}
989
990static inline void xdp_set_return_frame_no_direct(void)
991{
992 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
993
994 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
995}
996
997static inline void xdp_clear_return_frame_no_direct(void)
998{
999 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1000
1001 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1002}
1003
1004static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1005 unsigned int pktlen)
1006{
1007 unsigned int len;
1008
1009 if (unlikely(!(fwd->flags & IFF_UP)))
1010 return -ENETDOWN;
1011
1012 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1013 if (pktlen > len)
1014 return -EMSGSIZE;
1015
1016 return 0;
1017}
1018
1019/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1020 * same cpu context. Further for best results no more than a single map
1021 * for the do_redirect/do_flush pair should be used. This limitation is
1022 * because we only track one map and force a flush when the map changes.
1023 * This does not appear to be a real limitation for existing software.
1024 */
1025int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1026 struct xdp_buff *xdp, struct bpf_prog *prog);
1027int xdp_do_redirect(struct net_device *dev,
1028 struct xdp_buff *xdp,
1029 struct bpf_prog *prog);
1030int xdp_do_redirect_frame(struct net_device *dev,
1031 struct xdp_buff *xdp,
1032 struct xdp_frame *xdpf,
1033 struct bpf_prog *prog);
1034void xdp_do_flush(void);
1035
1036void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1037
1038#ifdef CONFIG_INET
1039struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1040 struct bpf_prog *prog, struct sk_buff *skb,
1041 struct sock *migrating_sk,
1042 u32 hash);
1043#else
1044static inline struct sock *
1045bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1046 struct bpf_prog *prog, struct sk_buff *skb,
1047 struct sock *migrating_sk,
1048 u32 hash)
1049{
1050 return NULL;
1051}
1052#endif
1053
1054#ifdef CONFIG_BPF_JIT
1055extern int bpf_jit_enable;
1056extern int bpf_jit_harden;
1057extern int bpf_jit_kallsyms;
1058extern long bpf_jit_limit;
1059extern long bpf_jit_limit_max;
1060
1061typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1062
1063void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1064
1065struct bpf_binary_header *
1066bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1067 unsigned int alignment,
1068 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1069void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1070u64 bpf_jit_alloc_exec_limit(void);
1071void *bpf_jit_alloc_exec(unsigned long size);
1072void bpf_jit_free_exec(void *addr);
1073void bpf_jit_free(struct bpf_prog *fp);
1074struct bpf_binary_header *
1075bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1076
1077void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1078void bpf_prog_pack_free(void *ptr, u32 size);
1079
1080static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1081{
1082 return list_empty(head: &fp->aux->ksym.lnode) ||
1083 fp->aux->ksym.lnode.prev == LIST_POISON2;
1084}
1085
1086struct bpf_binary_header *
1087bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1088 unsigned int alignment,
1089 struct bpf_binary_header **rw_hdr,
1090 u8 **rw_image,
1091 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1092int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1093 struct bpf_binary_header *ro_header,
1094 struct bpf_binary_header *rw_header);
1095void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1096 struct bpf_binary_header *rw_header);
1097
1098int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1099 struct bpf_jit_poke_descriptor *poke);
1100
1101int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1102 const struct bpf_insn *insn, bool extra_pass,
1103 u64 *func_addr, bool *func_addr_fixed);
1104
1105struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1106void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1107
1108static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1109 u32 pass, void *image)
1110{
1111 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1112 proglen, pass, image, current->comm, task_pid_nr(current));
1113
1114 if (image)
1115 print_hex_dump(KERN_ERR, prefix_str: "JIT code: ", prefix_type: DUMP_PREFIX_OFFSET,
1116 rowsize: 16, groupsize: 1, buf: image, len: proglen, ascii: false);
1117}
1118
1119static inline bool bpf_jit_is_ebpf(void)
1120{
1121# ifdef CONFIG_HAVE_EBPF_JIT
1122 return true;
1123# else
1124 return false;
1125# endif
1126}
1127
1128static inline bool ebpf_jit_enabled(void)
1129{
1130 return bpf_jit_enable && bpf_jit_is_ebpf();
1131}
1132
1133static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1134{
1135 return fp->jited && bpf_jit_is_ebpf();
1136}
1137
1138static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1139{
1140 /* These are the prerequisites, should someone ever have the
1141 * idea to call blinding outside of them, we make sure to
1142 * bail out.
1143 */
1144 if (!bpf_jit_is_ebpf())
1145 return false;
1146 if (!prog->jit_requested)
1147 return false;
1148 if (!bpf_jit_harden)
1149 return false;
1150 if (bpf_jit_harden == 1 && bpf_token_capable(token: prog->aux->token, CAP_BPF))
1151 return false;
1152
1153 return true;
1154}
1155
1156static inline bool bpf_jit_kallsyms_enabled(void)
1157{
1158 /* There are a couple of corner cases where kallsyms should
1159 * not be enabled f.e. on hardening.
1160 */
1161 if (bpf_jit_harden)
1162 return false;
1163 if (!bpf_jit_kallsyms)
1164 return false;
1165 if (bpf_jit_kallsyms == 1)
1166 return true;
1167
1168 return false;
1169}
1170
1171const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1172 unsigned long *off, char *sym);
1173bool is_bpf_text_address(unsigned long addr);
1174int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1175 char *sym);
1176struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1177
1178static inline const char *
1179bpf_address_lookup(unsigned long addr, unsigned long *size,
1180 unsigned long *off, char **modname, char *sym)
1181{
1182 const char *ret = __bpf_address_lookup(addr, size, off, sym);
1183
1184 if (ret && modname)
1185 *modname = NULL;
1186 return ret;
1187}
1188
1189void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1190void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1191
1192#else /* CONFIG_BPF_JIT */
1193
1194static inline bool ebpf_jit_enabled(void)
1195{
1196 return false;
1197}
1198
1199static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1200{
1201 return false;
1202}
1203
1204static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1205{
1206 return false;
1207}
1208
1209static inline int
1210bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1211 struct bpf_jit_poke_descriptor *poke)
1212{
1213 return -ENOTSUPP;
1214}
1215
1216static inline void bpf_jit_free(struct bpf_prog *fp)
1217{
1218 bpf_prog_unlock_free(fp);
1219}
1220
1221static inline bool bpf_jit_kallsyms_enabled(void)
1222{
1223 return false;
1224}
1225
1226static inline const char *
1227__bpf_address_lookup(unsigned long addr, unsigned long *size,
1228 unsigned long *off, char *sym)
1229{
1230 return NULL;
1231}
1232
1233static inline bool is_bpf_text_address(unsigned long addr)
1234{
1235 return false;
1236}
1237
1238static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1239 char *type, char *sym)
1240{
1241 return -ERANGE;
1242}
1243
1244static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1245{
1246 return NULL;
1247}
1248
1249static inline const char *
1250bpf_address_lookup(unsigned long addr, unsigned long *size,
1251 unsigned long *off, char **modname, char *sym)
1252{
1253 return NULL;
1254}
1255
1256static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1257{
1258}
1259
1260static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1261{
1262}
1263
1264#endif /* CONFIG_BPF_JIT */
1265
1266void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1267
1268#define BPF_ANC BIT(15)
1269
1270static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1271{
1272 switch (first->code) {
1273 case BPF_RET | BPF_K:
1274 case BPF_LD | BPF_W | BPF_LEN:
1275 return false;
1276
1277 case BPF_LD | BPF_W | BPF_ABS:
1278 case BPF_LD | BPF_H | BPF_ABS:
1279 case BPF_LD | BPF_B | BPF_ABS:
1280 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1281 return true;
1282 return false;
1283
1284 default:
1285 return true;
1286 }
1287}
1288
1289static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1290{
1291 BUG_ON(ftest->code & BPF_ANC);
1292
1293 switch (ftest->code) {
1294 case BPF_LD | BPF_W | BPF_ABS:
1295 case BPF_LD | BPF_H | BPF_ABS:
1296 case BPF_LD | BPF_B | BPF_ABS:
1297#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1298 return BPF_ANC | SKF_AD_##CODE
1299 switch (ftest->k) {
1300 BPF_ANCILLARY(PROTOCOL);
1301 BPF_ANCILLARY(PKTTYPE);
1302 BPF_ANCILLARY(IFINDEX);
1303 BPF_ANCILLARY(NLATTR);
1304 BPF_ANCILLARY(NLATTR_NEST);
1305 BPF_ANCILLARY(MARK);
1306 BPF_ANCILLARY(QUEUE);
1307 BPF_ANCILLARY(HATYPE);
1308 BPF_ANCILLARY(RXHASH);
1309 BPF_ANCILLARY(CPU);
1310 BPF_ANCILLARY(ALU_XOR_X);
1311 BPF_ANCILLARY(VLAN_TAG);
1312 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1313 BPF_ANCILLARY(PAY_OFFSET);
1314 BPF_ANCILLARY(RANDOM);
1315 BPF_ANCILLARY(VLAN_TPID);
1316 }
1317 fallthrough;
1318 default:
1319 return ftest->code;
1320 }
1321}
1322
1323void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1324 int k, unsigned int size);
1325
1326static inline int bpf_tell_extensions(void)
1327{
1328 return SKF_AD_MAX;
1329}
1330
1331struct bpf_sock_addr_kern {
1332 struct sock *sk;
1333 struct sockaddr *uaddr;
1334 /* Temporary "register" to make indirect stores to nested structures
1335 * defined above. We need three registers to make such a store, but
1336 * only two (src and dst) are available at convert_ctx_access time
1337 */
1338 u64 tmp_reg;
1339 void *t_ctx; /* Attach type specific context. */
1340 u32 uaddrlen;
1341};
1342
1343struct bpf_sock_ops_kern {
1344 struct sock *sk;
1345 union {
1346 u32 args[4];
1347 u32 reply;
1348 u32 replylong[4];
1349 };
1350 struct sk_buff *syn_skb;
1351 struct sk_buff *skb;
1352 void *skb_data_end;
1353 u8 op;
1354 u8 is_fullsock;
1355 u8 remaining_opt_len;
1356 u64 temp; /* temp and everything after is not
1357 * initialized to 0 before calling
1358 * the BPF program. New fields that
1359 * should be initialized to 0 should
1360 * be inserted before temp.
1361 * temp is scratch storage used by
1362 * sock_ops_convert_ctx_access
1363 * as temporary storage of a register.
1364 */
1365};
1366
1367struct bpf_sysctl_kern {
1368 struct ctl_table_header *head;
1369 struct ctl_table *table;
1370 void *cur_val;
1371 size_t cur_len;
1372 void *new_val;
1373 size_t new_len;
1374 int new_updated;
1375 int write;
1376 loff_t *ppos;
1377 /* Temporary "register" for indirect stores to ppos. */
1378 u64 tmp_reg;
1379};
1380
1381#define BPF_SOCKOPT_KERN_BUF_SIZE 32
1382struct bpf_sockopt_buf {
1383 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE];
1384};
1385
1386struct bpf_sockopt_kern {
1387 struct sock *sk;
1388 u8 *optval;
1389 u8 *optval_end;
1390 s32 level;
1391 s32 optname;
1392 s32 optlen;
1393 /* for retval in struct bpf_cg_run_ctx */
1394 struct task_struct *current_task;
1395 /* Temporary "register" for indirect stores to ppos. */
1396 u64 tmp_reg;
1397};
1398
1399int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1400
1401struct bpf_sk_lookup_kern {
1402 u16 family;
1403 u16 protocol;
1404 __be16 sport;
1405 u16 dport;
1406 struct {
1407 __be32 saddr;
1408 __be32 daddr;
1409 } v4;
1410 struct {
1411 const struct in6_addr *saddr;
1412 const struct in6_addr *daddr;
1413 } v6;
1414 struct sock *selected_sk;
1415 u32 ingress_ifindex;
1416 bool no_reuseport;
1417};
1418
1419extern struct static_key_false bpf_sk_lookup_enabled;
1420
1421/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1422 *
1423 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1424 * SK_DROP. Their meaning is as follows:
1425 *
1426 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1427 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1428 * SK_DROP : terminate lookup with -ECONNREFUSED
1429 *
1430 * This macro aggregates return values and selected sockets from
1431 * multiple BPF programs according to following rules in order:
1432 *
1433 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1434 * macro result is SK_PASS and last ctx.selected_sk is used.
1435 * 2. If any program returned SK_DROP return value,
1436 * macro result is SK_DROP.
1437 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1438 *
1439 * Caller must ensure that the prog array is non-NULL, and that the
1440 * array as well as the programs it contains remain valid.
1441 */
1442#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \
1443 ({ \
1444 struct bpf_sk_lookup_kern *_ctx = &(ctx); \
1445 struct bpf_prog_array_item *_item; \
1446 struct sock *_selected_sk = NULL; \
1447 bool _no_reuseport = false; \
1448 struct bpf_prog *_prog; \
1449 bool _all_pass = true; \
1450 u32 _ret; \
1451 \
1452 migrate_disable(); \
1453 _item = &(array)->items[0]; \
1454 while ((_prog = READ_ONCE(_item->prog))) { \
1455 /* restore most recent selection */ \
1456 _ctx->selected_sk = _selected_sk; \
1457 _ctx->no_reuseport = _no_reuseport; \
1458 \
1459 _ret = func(_prog, _ctx); \
1460 if (_ret == SK_PASS && _ctx->selected_sk) { \
1461 /* remember last non-NULL socket */ \
1462 _selected_sk = _ctx->selected_sk; \
1463 _no_reuseport = _ctx->no_reuseport; \
1464 } else if (_ret == SK_DROP && _all_pass) { \
1465 _all_pass = false; \
1466 } \
1467 _item++; \
1468 } \
1469 _ctx->selected_sk = _selected_sk; \
1470 _ctx->no_reuseport = _no_reuseport; \
1471 migrate_enable(); \
1472 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \
1473 })
1474
1475static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1476 const __be32 saddr, const __be16 sport,
1477 const __be32 daddr, const u16 dport,
1478 const int ifindex, struct sock **psk)
1479{
1480 struct bpf_prog_array *run_array;
1481 struct sock *selected_sk = NULL;
1482 bool no_reuseport = false;
1483
1484 rcu_read_lock();
1485 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1486 if (run_array) {
1487 struct bpf_sk_lookup_kern ctx = {
1488 .family = AF_INET,
1489 .protocol = protocol,
1490 .v4.saddr = saddr,
1491 .v4.daddr = daddr,
1492 .sport = sport,
1493 .dport = dport,
1494 .ingress_ifindex = ifindex,
1495 };
1496 u32 act;
1497
1498 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1499 if (act == SK_PASS) {
1500 selected_sk = ctx.selected_sk;
1501 no_reuseport = ctx.no_reuseport;
1502 } else {
1503 selected_sk = ERR_PTR(error: -ECONNREFUSED);
1504 }
1505 }
1506 rcu_read_unlock();
1507 *psk = selected_sk;
1508 return no_reuseport;
1509}
1510
1511#if IS_ENABLED(CONFIG_IPV6)
1512static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1513 const struct in6_addr *saddr,
1514 const __be16 sport,
1515 const struct in6_addr *daddr,
1516 const u16 dport,
1517 const int ifindex, struct sock **psk)
1518{
1519 struct bpf_prog_array *run_array;
1520 struct sock *selected_sk = NULL;
1521 bool no_reuseport = false;
1522
1523 rcu_read_lock();
1524 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1525 if (run_array) {
1526 struct bpf_sk_lookup_kern ctx = {
1527 .family = AF_INET6,
1528 .protocol = protocol,
1529 .v6.saddr = saddr,
1530 .v6.daddr = daddr,
1531 .sport = sport,
1532 .dport = dport,
1533 .ingress_ifindex = ifindex,
1534 };
1535 u32 act;
1536
1537 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1538 if (act == SK_PASS) {
1539 selected_sk = ctx.selected_sk;
1540 no_reuseport = ctx.no_reuseport;
1541 } else {
1542 selected_sk = ERR_PTR(error: -ECONNREFUSED);
1543 }
1544 }
1545 rcu_read_unlock();
1546 *psk = selected_sk;
1547 return no_reuseport;
1548}
1549#endif /* IS_ENABLED(CONFIG_IPV6) */
1550
1551static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1552 u64 flags, const u64 flag_mask,
1553 void *lookup_elem(struct bpf_map *map, u32 key))
1554{
1555 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1556 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1557
1558 /* Lower bits of the flags are used as return code on lookup failure */
1559 if (unlikely(flags & ~(action_mask | flag_mask)))
1560 return XDP_ABORTED;
1561
1562 ri->tgt_value = lookup_elem(map, index);
1563 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1564 /* If the lookup fails we want to clear out the state in the
1565 * redirect_info struct completely, so that if an eBPF program
1566 * performs multiple lookups, the last one always takes
1567 * precedence.
1568 */
1569 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1570 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1571 return flags & action_mask;
1572 }
1573
1574 ri->tgt_index = index;
1575 ri->map_id = map->id;
1576 ri->map_type = map->map_type;
1577
1578 if (flags & BPF_F_BROADCAST) {
1579 WRITE_ONCE(ri->map, map);
1580 ri->flags = flags;
1581 } else {
1582 WRITE_ONCE(ri->map, NULL);
1583 ri->flags = 0;
1584 }
1585
1586 return XDP_REDIRECT;
1587}
1588
1589#ifdef CONFIG_NET
1590int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1591int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1592 u32 len, u64 flags);
1593int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1594int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1595void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1596void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1597 void *buf, unsigned long len, bool flush);
1598#else /* CONFIG_NET */
1599static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1600 void *to, u32 len)
1601{
1602 return -EOPNOTSUPP;
1603}
1604
1605static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1606 const void *from, u32 len, u64 flags)
1607{
1608 return -EOPNOTSUPP;
1609}
1610
1611static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1612 void *buf, u32 len)
1613{
1614 return -EOPNOTSUPP;
1615}
1616
1617static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1618 void *buf, u32 len)
1619{
1620 return -EOPNOTSUPP;
1621}
1622
1623static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1624{
1625 return NULL;
1626}
1627
1628static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1629 unsigned long len, bool flush)
1630{
1631}
1632#endif /* CONFIG_NET */
1633
1634#endif /* __LINUX_FILTER_H__ */
1635

source code of linux/include/linux/filter.h