1#include <linux/gfp.h>
2#include <linux/highmem.h>
3#include <linux/kernel.h>
4#include <linux/mmdebug.h>
5#include <linux/mm_types.h>
6#include <linux/mm_inline.h>
7#include <linux/pagemap.h>
8#include <linux/rcupdate.h>
9#include <linux/smp.h>
10#include <linux/swap.h>
11#include <linux/rmap.h>
12
13#include <asm/pgalloc.h>
14#include <asm/tlb.h>
15
16#ifndef CONFIG_MMU_GATHER_NO_GATHER
17
18static bool tlb_next_batch(struct mmu_gather *tlb)
19{
20 struct mmu_gather_batch *batch;
21
22 /* Limit batching if we have delayed rmaps pending */
23 if (tlb->delayed_rmap && tlb->active != &tlb->local)
24 return false;
25
26 batch = tlb->active;
27 if (batch->next) {
28 tlb->active = batch->next;
29 return true;
30 }
31
32 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
33 return false;
34
35 batch = (void *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
36 if (!batch)
37 return false;
38
39 tlb->batch_count++;
40 batch->next = NULL;
41 batch->nr = 0;
42 batch->max = MAX_GATHER_BATCH;
43
44 tlb->active->next = batch;
45 tlb->active = batch;
46
47 return true;
48}
49
50#ifdef CONFIG_SMP
51static void tlb_flush_rmap_batch(struct mmu_gather_batch *batch, struct vm_area_struct *vma)
52{
53 struct encoded_page **pages = batch->encoded_pages;
54
55 for (int i = 0; i < batch->nr; i++) {
56 struct encoded_page *enc = pages[i];
57
58 if (encoded_page_flags(page: enc) & ENCODED_PAGE_BIT_DELAY_RMAP) {
59 struct page *page = encoded_page_ptr(page: enc);
60 unsigned int nr_pages = 1;
61
62 if (unlikely(encoded_page_flags(enc) &
63 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
64 nr_pages = encoded_nr_pages(page: pages[++i]);
65
66 folio_remove_rmap_ptes(page_folio(page), page, nr_pages,
67 vma);
68 }
69 }
70}
71
72/**
73 * tlb_flush_rmaps - do pending rmap removals after we have flushed the TLB
74 * @tlb: the current mmu_gather
75 * @vma: The memory area from which the pages are being removed.
76 *
77 * Note that because of how tlb_next_batch() above works, we will
78 * never start multiple new batches with pending delayed rmaps, so
79 * we only need to walk through the current active batch and the
80 * original local one.
81 */
82void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma)
83{
84 if (!tlb->delayed_rmap)
85 return;
86
87 tlb_flush_rmap_batch(batch: &tlb->local, vma);
88 if (tlb->active != &tlb->local)
89 tlb_flush_rmap_batch(batch: tlb->active, vma);
90 tlb->delayed_rmap = 0;
91}
92#endif
93
94/*
95 * We might end up freeing a lot of pages. Reschedule on a regular
96 * basis to avoid soft lockups in configurations without full
97 * preemption enabled. The magic number of 512 folios seems to work.
98 */
99#define MAX_NR_FOLIOS_PER_FREE 512
100
101static void __tlb_batch_free_encoded_pages(struct mmu_gather_batch *batch)
102{
103 struct encoded_page **pages = batch->encoded_pages;
104 unsigned int nr, nr_pages;
105
106 while (batch->nr) {
107 if (!page_poisoning_enabled_static() && !want_init_on_free()) {
108 nr = min(MAX_NR_FOLIOS_PER_FREE, batch->nr);
109
110 /*
111 * Make sure we cover page + nr_pages, and don't leave
112 * nr_pages behind when capping the number of entries.
113 */
114 if (unlikely(encoded_page_flags(pages[nr - 1]) &
115 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
116 nr++;
117 } else {
118 /*
119 * With page poisoning and init_on_free, the time it
120 * takes to free memory grows proportionally with the
121 * actual memory size. Therefore, limit based on the
122 * actual memory size and not the number of involved
123 * folios.
124 */
125 for (nr = 0, nr_pages = 0;
126 nr < batch->nr && nr_pages < MAX_NR_FOLIOS_PER_FREE;
127 nr++) {
128 if (unlikely(encoded_page_flags(pages[nr]) &
129 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
130 nr_pages += encoded_nr_pages(page: pages[++nr]);
131 else
132 nr_pages++;
133 }
134 }
135
136 free_pages_and_swap_cache(pages, nr);
137 pages += nr;
138 batch->nr -= nr;
139
140 cond_resched();
141 }
142}
143
144static void tlb_batch_pages_flush(struct mmu_gather *tlb)
145{
146 struct mmu_gather_batch *batch;
147
148 for (batch = &tlb->local; batch && batch->nr; batch = batch->next)
149 __tlb_batch_free_encoded_pages(batch);
150 tlb->active = &tlb->local;
151}
152
153static void tlb_batch_list_free(struct mmu_gather *tlb)
154{
155 struct mmu_gather_batch *batch, *next;
156
157 for (batch = tlb->local.next; batch; batch = next) {
158 next = batch->next;
159 free_pages(addr: (unsigned long)batch, order: 0);
160 }
161 tlb->local.next = NULL;
162}
163
164static bool __tlb_remove_folio_pages_size(struct mmu_gather *tlb,
165 struct page *page, unsigned int nr_pages, bool delay_rmap,
166 int page_size)
167{
168 int flags = delay_rmap ? ENCODED_PAGE_BIT_DELAY_RMAP : 0;
169 struct mmu_gather_batch *batch;
170
171 VM_BUG_ON(!tlb->end);
172
173#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
174 VM_WARN_ON(tlb->page_size != page_size);
175 VM_WARN_ON_ONCE(nr_pages != 1 && page_size != PAGE_SIZE);
176 VM_WARN_ON_ONCE(page_folio(page) != page_folio(page + nr_pages - 1));
177#endif
178
179 batch = tlb->active;
180 /*
181 * Add the page and check if we are full. If so
182 * force a flush.
183 */
184 if (likely(nr_pages == 1)) {
185 batch->encoded_pages[batch->nr++] = encode_page(page, flags);
186 } else {
187 flags |= ENCODED_PAGE_BIT_NR_PAGES_NEXT;
188 batch->encoded_pages[batch->nr++] = encode_page(page, flags);
189 batch->encoded_pages[batch->nr++] = encode_nr_pages(nr: nr_pages);
190 }
191 /*
192 * Make sure that we can always add another "page" + "nr_pages",
193 * requiring two entries instead of only a single one.
194 */
195 if (batch->nr >= batch->max - 1) {
196 if (!tlb_next_batch(tlb))
197 return true;
198 batch = tlb->active;
199 }
200 VM_BUG_ON_PAGE(batch->nr > batch->max - 1, page);
201
202 return false;
203}
204
205bool __tlb_remove_folio_pages(struct mmu_gather *tlb, struct page *page,
206 unsigned int nr_pages, bool delay_rmap)
207{
208 return __tlb_remove_folio_pages_size(tlb, page, nr_pages, delay_rmap,
209 PAGE_SIZE);
210}
211
212bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
213 bool delay_rmap, int page_size)
214{
215 return __tlb_remove_folio_pages_size(tlb, page, nr_pages: 1, delay_rmap, page_size);
216}
217
218#endif /* MMU_GATHER_NO_GATHER */
219
220#ifdef CONFIG_MMU_GATHER_TABLE_FREE
221
222static void __tlb_remove_table_free(struct mmu_table_batch *batch)
223{
224 int i;
225
226 for (i = 0; i < batch->nr; i++)
227 __tlb_remove_table(table: batch->tables[i]);
228
229 free_page((unsigned long)batch);
230}
231
232#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
233
234/*
235 * Semi RCU freeing of the page directories.
236 *
237 * This is needed by some architectures to implement software pagetable walkers.
238 *
239 * gup_fast() and other software pagetable walkers do a lockless page-table
240 * walk and therefore needs some synchronization with the freeing of the page
241 * directories. The chosen means to accomplish that is by disabling IRQs over
242 * the walk.
243 *
244 * Architectures that use IPIs to flush TLBs will then automagically DTRT,
245 * since we unlink the page, flush TLBs, free the page. Since the disabling of
246 * IRQs delays the completion of the TLB flush we can never observe an already
247 * freed page.
248 *
249 * Not all systems IPI every CPU for this purpose:
250 *
251 * - Some architectures have HW support for cross-CPU synchronisation of TLB
252 * flushes, so there's no IPI at all.
253 *
254 * - Paravirt guests can do this TLB flushing in the hypervisor, or coordinate
255 * with the hypervisor to defer flushing on preempted vCPUs.
256 *
257 * Such systems need to delay the freeing by some other means, this is that
258 * means.
259 *
260 * What we do is batch the freed directory pages (tables) and RCU free them.
261 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
262 * holds off grace periods.
263 *
264 * However, in order to batch these pages we need to allocate storage, this
265 * allocation is deep inside the MM code and can thus easily fail on memory
266 * pressure. To guarantee progress we fall back to single table freeing, see
267 * the implementation of tlb_remove_table_one().
268 *
269 */
270
271static void tlb_remove_table_smp_sync(void *arg)
272{
273 /* Simply deliver the interrupt */
274}
275
276void tlb_remove_table_sync_one(void)
277{
278 /*
279 * This isn't an RCU grace period and hence the page-tables cannot be
280 * assumed to be actually RCU-freed.
281 *
282 * It is however sufficient for software page-table walkers that rely on
283 * IRQ disabling.
284 */
285 smp_call_function(func: tlb_remove_table_smp_sync, NULL, wait: 1);
286}
287
288static void tlb_remove_table_rcu(struct rcu_head *head)
289{
290 __tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu));
291}
292
293static void tlb_remove_table_free(struct mmu_table_batch *batch)
294{
295 call_rcu(head: &batch->rcu, func: tlb_remove_table_rcu);
296}
297
298#else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */
299
300static void tlb_remove_table_free(struct mmu_table_batch *batch)
301{
302 __tlb_remove_table_free(batch);
303}
304
305#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
306
307/*
308 * If we want tlb_remove_table() to imply TLB invalidates.
309 */
310static inline void tlb_table_invalidate(struct mmu_gather *tlb)
311{
312 if (tlb_needs_table_invalidate()) {
313 /*
314 * Invalidate page-table caches used by hardware walkers. Then
315 * we still need to RCU-sched wait while freeing the pages
316 * because software walkers can still be in-flight.
317 */
318 tlb_flush_mmu_tlbonly(tlb);
319 }
320}
321
322#ifdef CONFIG_PT_RECLAIM
323static inline void __tlb_remove_table_one_rcu(struct rcu_head *head)
324{
325 struct ptdesc *ptdesc;
326
327 ptdesc = container_of(head, struct ptdesc, pt_rcu_head);
328 __tlb_remove_table(table: ptdesc);
329}
330
331static inline void __tlb_remove_table_one(void *table)
332{
333 struct ptdesc *ptdesc;
334
335 ptdesc = table;
336 call_rcu(head: &ptdesc->pt_rcu_head, func: __tlb_remove_table_one_rcu);
337}
338#else
339static inline void __tlb_remove_table_one(void *table)
340{
341 tlb_remove_table_sync_one();
342 __tlb_remove_table(table);
343}
344#endif /* CONFIG_PT_RECLAIM */
345
346static void tlb_remove_table_one(void *table)
347{
348 __tlb_remove_table_one(table);
349}
350
351static void tlb_table_flush(struct mmu_gather *tlb)
352{
353 struct mmu_table_batch **batch = &tlb->batch;
354
355 if (*batch) {
356 tlb_table_invalidate(tlb);
357 tlb_remove_table_free(batch: *batch);
358 *batch = NULL;
359 }
360}
361
362void tlb_remove_table(struct mmu_gather *tlb, void *table)
363{
364 struct mmu_table_batch **batch = &tlb->batch;
365
366 if (*batch == NULL) {
367 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
368 if (*batch == NULL) {
369 tlb_table_invalidate(tlb);
370 tlb_remove_table_one(table);
371 return;
372 }
373 (*batch)->nr = 0;
374 }
375
376 (*batch)->tables[(*batch)->nr++] = table;
377 if ((*batch)->nr == MAX_TABLE_BATCH)
378 tlb_table_flush(tlb);
379}
380
381static inline void tlb_table_init(struct mmu_gather *tlb)
382{
383 tlb->batch = NULL;
384}
385
386#else /* !CONFIG_MMU_GATHER_TABLE_FREE */
387
388static inline void tlb_table_flush(struct mmu_gather *tlb) { }
389static inline void tlb_table_init(struct mmu_gather *tlb) { }
390
391#endif /* CONFIG_MMU_GATHER_TABLE_FREE */
392
393static void tlb_flush_mmu_free(struct mmu_gather *tlb)
394{
395 tlb_table_flush(tlb);
396#ifndef CONFIG_MMU_GATHER_NO_GATHER
397 tlb_batch_pages_flush(tlb);
398#endif
399}
400
401void tlb_flush_mmu(struct mmu_gather *tlb)
402{
403 tlb_flush_mmu_tlbonly(tlb);
404 tlb_flush_mmu_free(tlb);
405}
406
407static void __tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
408 bool fullmm)
409{
410 tlb->mm = mm;
411 tlb->fullmm = fullmm;
412
413#ifndef CONFIG_MMU_GATHER_NO_GATHER
414 tlb->need_flush_all = 0;
415 tlb->local.next = NULL;
416 tlb->local.nr = 0;
417 tlb->local.max = ARRAY_SIZE(tlb->__pages);
418 tlb->active = &tlb->local;
419 tlb->batch_count = 0;
420#endif
421 tlb->delayed_rmap = 0;
422
423 tlb_table_init(tlb);
424#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
425 tlb->page_size = 0;
426#endif
427 tlb->vma_pfn = 0;
428
429 __tlb_reset_range(tlb);
430 inc_tlb_flush_pending(mm: tlb->mm);
431}
432
433/**
434 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
435 * @tlb: the mmu_gather structure to initialize
436 * @mm: the mm_struct of the target address space
437 *
438 * Called to initialize an (on-stack) mmu_gather structure for page-table
439 * tear-down from @mm.
440 */
441void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm)
442{
443 __tlb_gather_mmu(tlb, mm, fullmm: false);
444}
445
446/**
447 * tlb_gather_mmu_fullmm - initialize an mmu_gather structure for page-table tear-down
448 * @tlb: the mmu_gather structure to initialize
449 * @mm: the mm_struct of the target address space
450 *
451 * In this case, @mm is without users and we're going to destroy the
452 * full address space (exit/execve).
453 *
454 * Called to initialize an (on-stack) mmu_gather structure for page-table
455 * tear-down from @mm.
456 */
457void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm)
458{
459 __tlb_gather_mmu(tlb, mm, fullmm: true);
460}
461
462/**
463 * tlb_finish_mmu - finish an mmu_gather structure
464 * @tlb: the mmu_gather structure to finish
465 *
466 * Called at the end of the shootdown operation to free up any resources that
467 * were required.
468 */
469void tlb_finish_mmu(struct mmu_gather *tlb)
470{
471 /*
472 * If there are parallel threads are doing PTE changes on same range
473 * under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB
474 * flush by batching, one thread may end up seeing inconsistent PTEs
475 * and result in having stale TLB entries. So flush TLB forcefully
476 * if we detect parallel PTE batching threads.
477 *
478 * However, some syscalls, e.g. munmap(), may free page tables, this
479 * needs force flush everything in the given range. Otherwise this
480 * may result in having stale TLB entries for some architectures,
481 * e.g. aarch64, that could specify flush what level TLB.
482 */
483 if (mm_tlb_flush_nested(mm: tlb->mm)) {
484 /*
485 * The aarch64 yields better performance with fullmm by
486 * avoiding multiple CPUs spamming TLBI messages at the
487 * same time.
488 *
489 * On x86 non-fullmm doesn't yield significant difference
490 * against fullmm.
491 */
492 tlb->fullmm = 1;
493 __tlb_reset_range(tlb);
494 tlb->freed_tables = 1;
495 }
496
497 tlb_flush_mmu(tlb);
498
499#ifndef CONFIG_MMU_GATHER_NO_GATHER
500 tlb_batch_list_free(tlb);
501#endif
502 dec_tlb_flush_pending(mm: tlb->mm);
503}
504

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/mm/mmu_gather.c