1 | //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains routines that help analyze properties that chains of |
10 | // computations have. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_ANALYSIS_VALUETRACKING_H |
15 | #define LLVM_ANALYSIS_VALUETRACKING_H |
16 | |
17 | #include "llvm/Analysis/SimplifyQuery.h" |
18 | #include "llvm/Analysis/WithCache.h" |
19 | #include "llvm/IR/Constants.h" |
20 | #include "llvm/IR/DataLayout.h" |
21 | #include "llvm/IR/FMF.h" |
22 | #include "llvm/IR/InstrTypes.h" |
23 | #include "llvm/IR/Instructions.h" |
24 | #include "llvm/IR/Intrinsics.h" |
25 | #include "llvm/Support/Compiler.h" |
26 | #include <cassert> |
27 | #include <cstdint> |
28 | |
29 | namespace llvm { |
30 | |
31 | class Operator; |
32 | class AddOperator; |
33 | class AssumptionCache; |
34 | class DominatorTree; |
35 | class GEPOperator; |
36 | class WithOverflowInst; |
37 | struct KnownBits; |
38 | struct KnownFPClass; |
39 | class Loop; |
40 | class LoopInfo; |
41 | class MDNode; |
42 | class StringRef; |
43 | class TargetLibraryInfo; |
44 | template <typename T> class ArrayRef; |
45 | |
46 | constexpr unsigned MaxAnalysisRecursionDepth = 6; |
47 | |
48 | /// The max limit of the search depth in DecomposeGEPExpression() and |
49 | /// getUnderlyingObject(). |
50 | constexpr unsigned MaxLookupSearchDepth = 6; |
51 | |
52 | /// Determine which bits of V are known to be either zero or one and return |
53 | /// them in the KnownZero/KnownOne bit sets. |
54 | /// |
55 | /// This function is defined on values with integer type, values with pointer |
56 | /// type, and vectors of integers. In the case |
57 | /// where V is a vector, the known zero and known one values are the |
58 | /// same width as the vector element, and the bit is set only if it is true |
59 | /// for all of the elements in the vector. |
60 | LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, |
61 | const DataLayout &DL, |
62 | AssumptionCache *AC = nullptr, |
63 | const Instruction *CxtI = nullptr, |
64 | const DominatorTree *DT = nullptr, |
65 | bool UseInstrInfo = true, unsigned Depth = 0); |
66 | |
67 | /// Returns the known bits rather than passing by reference. |
68 | LLVM_ABI KnownBits computeKnownBits(const Value *V, const DataLayout &DL, |
69 | AssumptionCache *AC = nullptr, |
70 | const Instruction *CxtI = nullptr, |
71 | const DominatorTree *DT = nullptr, |
72 | bool UseInstrInfo = true, |
73 | unsigned Depth = 0); |
74 | |
75 | /// Returns the known bits rather than passing by reference. |
76 | LLVM_ABI KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, |
77 | const DataLayout &DL, |
78 | AssumptionCache *AC = nullptr, |
79 | const Instruction *CxtI = nullptr, |
80 | const DominatorTree *DT = nullptr, |
81 | bool UseInstrInfo = true, |
82 | unsigned Depth = 0); |
83 | |
84 | LLVM_ABI KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, |
85 | const SimplifyQuery &Q, unsigned Depth = 0); |
86 | |
87 | LLVM_ABI KnownBits computeKnownBits(const Value *V, const SimplifyQuery &Q, |
88 | unsigned Depth = 0); |
89 | |
90 | LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, |
91 | const SimplifyQuery &Q, unsigned Depth = 0); |
92 | |
93 | /// Compute known bits from the range metadata. |
94 | /// \p KnownZero the set of bits that are known to be zero |
95 | /// \p KnownOne the set of bits that are known to be one |
96 | LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, |
97 | KnownBits &Known); |
98 | |
99 | /// Merge bits known from context-dependent facts into Known. |
100 | LLVM_ABI void computeKnownBitsFromContext(const Value *V, KnownBits &Known, |
101 | const SimplifyQuery &Q, |
102 | unsigned Depth = 0); |
103 | |
104 | /// Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or). |
105 | LLVM_ABI KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, |
106 | const KnownBits &KnownLHS, |
107 | const KnownBits &KnownRHS, |
108 | const SimplifyQuery &SQ, |
109 | unsigned Depth = 0); |
110 | |
111 | /// Adjust \p Known for the given select \p Arm to include information from the |
112 | /// select \p Cond. |
113 | LLVM_ABI void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, |
114 | Value *Arm, bool Invert, |
115 | const SimplifyQuery &Q, |
116 | unsigned Depth = 0); |
117 | |
118 | /// Return true if LHS and RHS have no common bits set. |
119 | LLVM_ABI bool haveNoCommonBitsSet(const WithCache<const Value *> &LHSCache, |
120 | const WithCache<const Value *> &RHSCache, |
121 | const SimplifyQuery &SQ); |
122 | |
123 | /// Return true if the given value is known to have exactly one bit set when |
124 | /// defined. For vectors return true if every element is known to be a power |
125 | /// of two when defined. Supports values with integer or pointer type and |
126 | /// vectors of integers. If 'OrZero' is set, then return true if the given |
127 | /// value is either a power of two or zero. |
128 | LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, |
129 | bool OrZero = false, |
130 | AssumptionCache *AC = nullptr, |
131 | const Instruction *CxtI = nullptr, |
132 | const DominatorTree *DT = nullptr, |
133 | bool UseInstrInfo = true, |
134 | unsigned Depth = 0); |
135 | |
136 | LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, |
137 | const SimplifyQuery &Q, |
138 | unsigned Depth = 0); |
139 | |
140 | LLVM_ABI bool isOnlyUsedInZeroComparison(const Instruction *CxtI); |
141 | |
142 | LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI); |
143 | |
144 | /// Return true if the given value is known to be non-zero when defined. For |
145 | /// vectors, return true if every element is known to be non-zero when |
146 | /// defined. For pointers, if the context instruction and dominator tree are |
147 | /// specified, perform context-sensitive analysis and return true if the |
148 | /// pointer couldn't possibly be null at the specified instruction. |
149 | /// Supports values with integer or pointer type and vectors of integers. |
150 | LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, |
151 | unsigned Depth = 0); |
152 | |
153 | /// Return true if the two given values are negation. |
154 | /// Currently can recoginze Value pair: |
155 | /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X) |
156 | /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A) |
157 | LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, |
158 | bool NeedNSW = false, bool AllowPoison = true); |
159 | |
160 | /// Return true iff: |
161 | /// 1. X is poison implies Y is poison. |
162 | /// 2. X is true implies Y is false. |
163 | /// 3. X is false implies Y is true. |
164 | /// Otherwise, return false. |
165 | LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y); |
166 | |
167 | /// Returns true if the give value is known to be non-negative. |
168 | LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, |
169 | unsigned Depth = 0); |
170 | |
171 | /// Returns true if the given value is known be positive (i.e. non-negative |
172 | /// and non-zero). |
173 | LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, |
174 | unsigned Depth = 0); |
175 | |
176 | /// Returns true if the given value is known be negative (i.e. non-positive |
177 | /// and non-zero). |
178 | LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, |
179 | unsigned Depth = 0); |
180 | |
181 | /// Return true if the given values are known to be non-equal when defined. |
182 | /// Supports scalar integer types only. |
183 | LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, |
184 | const SimplifyQuery &SQ, unsigned Depth = 0); |
185 | |
186 | /// Return true if 'V & Mask' is known to be zero. We use this predicate to |
187 | /// simplify operations downstream. Mask is known to be zero for bits that V |
188 | /// cannot have. |
189 | /// |
190 | /// This function is defined on values with integer type, values with pointer |
191 | /// type, and vectors of integers. In the case |
192 | /// where V is a vector, the mask, known zero, and known one values are the |
193 | /// same width as the vector element, and the bit is set only if it is true |
194 | /// for all of the elements in the vector. |
195 | LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, |
196 | const SimplifyQuery &SQ, unsigned Depth = 0); |
197 | |
198 | /// Return the number of times the sign bit of the register is replicated into |
199 | /// the other bits. We know that at least 1 bit is always equal to the sign |
200 | /// bit (itself), but other cases can give us information. For example, |
201 | /// immediately after an "ashr X, 2", we know that the top 3 bits are all |
202 | /// equal to each other, so we return 3. For vectors, return the number of |
203 | /// sign bits for the vector element with the mininum number of known sign |
204 | /// bits. |
205 | LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, |
206 | AssumptionCache *AC = nullptr, |
207 | const Instruction *CxtI = nullptr, |
208 | const DominatorTree *DT = nullptr, |
209 | bool UseInstrInfo = true, |
210 | unsigned Depth = 0); |
211 | |
212 | /// Get the upper bound on bit size for this Value \p Op as a signed integer. |
213 | /// i.e. x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)). |
214 | /// Similar to the APInt::getSignificantBits function. |
215 | LLVM_ABI unsigned ComputeMaxSignificantBits(const Value *Op, |
216 | const DataLayout &DL, |
217 | AssumptionCache *AC = nullptr, |
218 | const Instruction *CxtI = nullptr, |
219 | const DominatorTree *DT = nullptr, |
220 | unsigned Depth = 0); |
221 | |
222 | /// Map a call instruction to an intrinsic ID. Libcalls which have equivalent |
223 | /// intrinsics are treated as-if they were intrinsics. |
224 | LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, |
225 | const TargetLibraryInfo *TLI); |
226 | |
227 | /// Given an exploded icmp instruction, return true if the comparison only |
228 | /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if |
229 | /// the result of the comparison is true when the input value is signed. |
230 | LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, |
231 | bool &TrueIfSigned); |
232 | |
233 | /// Determine which floating-point classes are valid for \p V, and return them |
234 | /// in KnownFPClass bit sets. |
235 | /// |
236 | /// This function is defined on values with floating-point type, values vectors |
237 | /// of floating-point type, and arrays of floating-point type. |
238 | |
239 | /// \p InterestedClasses is a compile time optimization hint for which floating |
240 | /// point classes should be queried. Queries not specified in \p |
241 | /// InterestedClasses should be reliable if they are determined during the |
242 | /// query. |
243 | LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, |
244 | const APInt &DemandedElts, |
245 | FPClassTest InterestedClasses, |
246 | const SimplifyQuery &SQ, |
247 | unsigned Depth = 0); |
248 | |
249 | LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, |
250 | FPClassTest InterestedClasses, |
251 | const SimplifyQuery &SQ, |
252 | unsigned Depth = 0); |
253 | |
254 | LLVM_ABI KnownFPClass computeKnownFPClass( |
255 | const Value *V, const DataLayout &DL, |
256 | FPClassTest InterestedClasses = fcAllFlags, |
257 | const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr, |
258 | const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr, |
259 | bool UseInstrInfo = true, unsigned Depth = 0); |
260 | |
261 | /// Wrapper to account for known fast math flags at the use instruction. |
262 | LLVM_ABI KnownFPClass computeKnownFPClass( |
263 | const Value *V, const APInt &DemandedElts, FastMathFlags FMF, |
264 | FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth = 0); |
265 | |
266 | LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, FastMathFlags FMF, |
267 | FPClassTest InterestedClasses, |
268 | const SimplifyQuery &SQ, |
269 | unsigned Depth = 0); |
270 | |
271 | /// Return true if we can prove that the specified FP value is never equal to |
272 | /// -0.0. Users should use caution when considering PreserveSign |
273 | /// denormal-fp-math. |
274 | LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, |
275 | unsigned Depth = 0); |
276 | |
277 | /// Return true if we can prove that the specified FP value is either NaN or |
278 | /// never less than -0.0. |
279 | /// |
280 | /// NaN --> true |
281 | /// +0 --> true |
282 | /// -0 --> true |
283 | /// x > +0 --> true |
284 | /// x < -0 --> false |
285 | LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, |
286 | const SimplifyQuery &SQ, |
287 | unsigned Depth = 0); |
288 | |
289 | /// Return true if the floating-point scalar value is not an infinity or if |
290 | /// the floating-point vector value has no infinities. Return false if a value |
291 | /// could ever be infinity. |
292 | LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, |
293 | unsigned Depth = 0); |
294 | |
295 | /// Return true if the floating-point value can never contain a NaN or infinity. |
296 | LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, |
297 | unsigned Depth = 0); |
298 | |
299 | /// Return true if the floating-point scalar value is not a NaN or if the |
300 | /// floating-point vector value has no NaN elements. Return false if a value |
301 | /// could ever be NaN. |
302 | LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, |
303 | unsigned Depth = 0); |
304 | |
305 | /// Return false if we can prove that the specified FP value's sign bit is 0. |
306 | /// Return true if we can prove that the specified FP value's sign bit is 1. |
307 | /// Otherwise return std::nullopt. |
308 | LLVM_ABI std::optional<bool> computeKnownFPSignBit(const Value *V, |
309 | const SimplifyQuery &SQ, |
310 | unsigned Depth = 0); |
311 | |
312 | /// Return true if the sign bit of the FP value can be ignored by the user when |
313 | /// the value is zero. |
314 | bool canIgnoreSignBitOfZero(const Use &U); |
315 | |
316 | /// Return true if the sign bit of the FP value can be ignored by the user when |
317 | /// the value is NaN. |
318 | bool canIgnoreSignBitOfNaN(const Use &U); |
319 | |
320 | /// If the specified value can be set by repeating the same byte in memory, |
321 | /// return the i8 value that it is represented with. This is true for all i8 |
322 | /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double |
323 | /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g. |
324 | /// i16 0x1234), return null. If the value is entirely undef and padding, |
325 | /// return undef. |
326 | LLVM_ABI Value *isBytewiseValue(Value *V, const DataLayout &DL); |
327 | |
328 | /// Given an aggregate and an sequence of indices, see if the scalar value |
329 | /// indexed is already around as a register, for example if it were inserted |
330 | /// directly into the aggregate. |
331 | /// |
332 | /// If InsertBefore is not empty, this function will duplicate (modified) |
333 | /// insertvalues when a part of a nested struct is extracted. |
334 | LLVM_ABI Value *FindInsertedValue( |
335 | Value *V, ArrayRef<unsigned> idx_range, |
336 | std::optional<BasicBlock::iterator> InsertBefore = std::nullopt); |
337 | |
338 | /// Analyze the specified pointer to see if it can be expressed as a base |
339 | /// pointer plus a constant offset. Return the base and offset to the caller. |
340 | /// |
341 | /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that |
342 | /// creates and later unpacks the required APInt. |
343 | inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, |
344 | const DataLayout &DL, |
345 | bool AllowNonInbounds = true) { |
346 | APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ty: Ptr->getType()), 0); |
347 | Value *Base = |
348 | Ptr->stripAndAccumulateConstantOffsets(DL, Offset&: OffsetAPInt, AllowNonInbounds); |
349 | |
350 | Offset = OffsetAPInt.getSExtValue(); |
351 | return Base; |
352 | } |
353 | inline const Value * |
354 | GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset, |
355 | const DataLayout &DL, |
356 | bool AllowNonInbounds = true) { |
357 | return GetPointerBaseWithConstantOffset(Ptr: const_cast<Value *>(Ptr), Offset, DL, |
358 | AllowNonInbounds); |
359 | } |
360 | |
361 | /// Returns true if the GEP is based on a pointer to a string (array of |
362 | // \p CharSize integers) and is indexing into this string. |
363 | LLVM_ABI bool isGEPBasedOnPointerToString(const GEPOperator *GEP, |
364 | unsigned CharSize = 8); |
365 | |
366 | /// Represents offset+length into a ConstantDataArray. |
367 | struct ConstantDataArraySlice { |
368 | /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid |
369 | /// initializer, it just doesn't fit the ConstantDataArray interface). |
370 | const ConstantDataArray *Array; |
371 | |
372 | /// Slice starts at this Offset. |
373 | uint64_t Offset; |
374 | |
375 | /// Length of the slice. |
376 | uint64_t Length; |
377 | |
378 | /// Moves the Offset and adjusts Length accordingly. |
379 | void move(uint64_t Delta) { |
380 | assert(Delta < Length); |
381 | Offset += Delta; |
382 | Length -= Delta; |
383 | } |
384 | |
385 | /// Convenience accessor for elements in the slice. |
386 | uint64_t operator[](unsigned I) const { |
387 | return Array == nullptr ? 0 : Array->getElementAsInteger(i: I + Offset); |
388 | } |
389 | }; |
390 | |
391 | /// Returns true if the value \p V is a pointer into a ConstantDataArray. |
392 | /// If successful \p Slice will point to a ConstantDataArray info object |
393 | /// with an appropriate offset. |
394 | LLVM_ABI bool getConstantDataArrayInfo(const Value *V, |
395 | ConstantDataArraySlice &Slice, |
396 | unsigned ElementSize, |
397 | uint64_t Offset = 0); |
398 | |
399 | /// This function computes the length of a null-terminated C string pointed to |
400 | /// by V. If successful, it returns true and returns the string in Str. If |
401 | /// unsuccessful, it returns false. This does not include the trailing null |
402 | /// character by default. If TrimAtNul is set to false, then this returns any |
403 | /// trailing null characters as well as any other characters that come after |
404 | /// it. |
405 | LLVM_ABI bool getConstantStringInfo(const Value *V, StringRef &Str, |
406 | bool TrimAtNul = true); |
407 | |
408 | /// If we can compute the length of the string pointed to by the specified |
409 | /// pointer, return 'len+1'. If we can't, return 0. |
410 | LLVM_ABI uint64_t GetStringLength(const Value *V, unsigned CharSize = 8); |
411 | |
412 | /// This function returns call pointer argument that is considered the same by |
413 | /// aliasing rules. You CAN'T use it to replace one value with another. If |
414 | /// \p MustPreserveNullness is true, the call must preserve the nullness of |
415 | /// the pointer. |
416 | LLVM_ABI const Value * |
417 | getArgumentAliasingToReturnedPointer(const CallBase *Call, |
418 | bool MustPreserveNullness); |
419 | inline Value *getArgumentAliasingToReturnedPointer(CallBase *Call, |
420 | bool MustPreserveNullness) { |
421 | return const_cast<Value *>(getArgumentAliasingToReturnedPointer( |
422 | Call: const_cast<const CallBase *>(Call), MustPreserveNullness)); |
423 | } |
424 | |
425 | /// {launder,strip}.invariant.group returns pointer that aliases its argument, |
426 | /// and it only captures pointer by returning it. |
427 | /// These intrinsics are not marked as nocapture, because returning is |
428 | /// considered as capture. The arguments are not marked as returned neither, |
429 | /// because it would make it useless. If \p MustPreserveNullness is true, |
430 | /// the intrinsic must preserve the nullness of the pointer. |
431 | LLVM_ABI bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( |
432 | const CallBase *Call, bool MustPreserveNullness); |
433 | |
434 | /// This method strips off any GEP address adjustments, pointer casts |
435 | /// or `llvm.threadlocal.address` from the specified value \p V, returning the |
436 | /// original object being addressed. Note that the returned value has pointer |
437 | /// type if the specified value does. If the \p MaxLookup value is non-zero, it |
438 | /// limits the number of instructions to be stripped off. |
439 | LLVM_ABI const Value * |
440 | getUnderlyingObject(const Value *V, unsigned MaxLookup = MaxLookupSearchDepth); |
441 | inline Value *getUnderlyingObject(Value *V, |
442 | unsigned MaxLookup = MaxLookupSearchDepth) { |
443 | // Force const to avoid infinite recursion. |
444 | const Value *VConst = V; |
445 | return const_cast<Value *>(getUnderlyingObject(V: VConst, MaxLookup)); |
446 | } |
447 | |
448 | /// Like getUnderlyingObject(), but will try harder to find a single underlying |
449 | /// object. In particular, this function also looks through selects and phis. |
450 | LLVM_ABI const Value *getUnderlyingObjectAggressive(const Value *V); |
451 | |
452 | /// This method is similar to getUnderlyingObject except that it can |
453 | /// look through phi and select instructions and return multiple objects. |
454 | /// |
455 | /// If LoopInfo is passed, loop phis are further analyzed. If a pointer |
456 | /// accesses different objects in each iteration, we don't look through the |
457 | /// phi node. E.g. consider this loop nest: |
458 | /// |
459 | /// int **A; |
460 | /// for (i) |
461 | /// for (j) { |
462 | /// A[i][j] = A[i-1][j] * B[j] |
463 | /// } |
464 | /// |
465 | /// This is transformed by Load-PRE to stash away A[i] for the next iteration |
466 | /// of the outer loop: |
467 | /// |
468 | /// Curr = A[0]; // Prev_0 |
469 | /// for (i: 1..N) { |
470 | /// Prev = Curr; // Prev = PHI (Prev_0, Curr) |
471 | /// Curr = A[i]; |
472 | /// for (j: 0..N) { |
473 | /// Curr[j] = Prev[j] * B[j] |
474 | /// } |
475 | /// } |
476 | /// |
477 | /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects |
478 | /// should not assume that Curr and Prev share the same underlying object thus |
479 | /// it shouldn't look through the phi above. |
480 | LLVM_ABI void getUnderlyingObjects(const Value *V, |
481 | SmallVectorImpl<const Value *> &Objects, |
482 | const LoopInfo *LI = nullptr, |
483 | unsigned MaxLookup = MaxLookupSearchDepth); |
484 | |
485 | /// This is a wrapper around getUnderlyingObjects and adds support for basic |
486 | /// ptrtoint+arithmetic+inttoptr sequences. |
487 | LLVM_ABI bool getUnderlyingObjectsForCodeGen(const Value *V, |
488 | SmallVectorImpl<Value *> &Objects); |
489 | |
490 | /// Returns unique alloca where the value comes from, or nullptr. |
491 | /// If OffsetZero is true check that V points to the begining of the alloca. |
492 | LLVM_ABI AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false); |
493 | inline const AllocaInst *findAllocaForValue(const Value *V, |
494 | bool OffsetZero = false) { |
495 | return findAllocaForValue(V: const_cast<Value *>(V), OffsetZero); |
496 | } |
497 | |
498 | /// Return true if the only users of this pointer are lifetime markers. |
499 | LLVM_ABI bool onlyUsedByLifetimeMarkers(const Value *V); |
500 | |
501 | /// Return true if the only users of this pointer are lifetime markers or |
502 | /// droppable instructions. |
503 | LLVM_ABI bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V); |
504 | |
505 | /// Return true if the instruction doesn't potentially cross vector lanes. This |
506 | /// condition is weaker than checking that the instruction is lanewise: lanewise |
507 | /// means that the same operation is splatted across all lanes, but we also |
508 | /// include the case where there is a different operation on each lane, as long |
509 | /// as the operation only uses data from that lane. An example of an operation |
510 | /// that is not lanewise, but doesn't cross vector lanes is insertelement. |
511 | LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I); |
512 | |
513 | /// Return true if the instruction does not have any effects besides |
514 | /// calculating the result and does not have undefined behavior. |
515 | /// |
516 | /// This method never returns true for an instruction that returns true for |
517 | /// mayHaveSideEffects; however, this method also does some other checks in |
518 | /// addition. It checks for undefined behavior, like dividing by zero or |
519 | /// loading from an invalid pointer (but not for undefined results, like a |
520 | /// shift with a shift amount larger than the width of the result). It checks |
521 | /// for malloc and alloca because speculatively executing them might cause a |
522 | /// memory leak. It also returns false for instructions related to control |
523 | /// flow, specifically terminators and PHI nodes. |
524 | /// |
525 | /// If the CtxI is specified this method performs context-sensitive analysis |
526 | /// and returns true if it is safe to execute the instruction immediately |
527 | /// before the CtxI. If the instruction has (transitive) operands that don't |
528 | /// dominate CtxI, the analysis is performed under the assumption that these |
529 | /// operands will also be speculated to a point before CxtI. |
530 | /// |
531 | /// If the CtxI is NOT specified this method only looks at the instruction |
532 | /// itself and its operands, so if this method returns true, it is safe to |
533 | /// move the instruction as long as the correct dominance relationships for |
534 | /// the operands and users hold. |
535 | /// |
536 | /// If \p UseVariableInfo is true, the information from non-constant operands |
537 | /// will be taken into account. |
538 | /// |
539 | /// If \p IgnoreUBImplyingAttrs is true, UB-implying attributes will be ignored. |
540 | /// The caller is responsible for correctly propagating them after hoisting. |
541 | /// |
542 | /// This method can return true for instructions that read memory; |
543 | /// for such instructions, moving them may change the resulting value. |
544 | LLVM_ABI bool isSafeToSpeculativelyExecute( |
545 | const Instruction *I, const Instruction *CtxI = nullptr, |
546 | AssumptionCache *AC = nullptr, const DominatorTree *DT = nullptr, |
547 | const TargetLibraryInfo *TLI = nullptr, bool UseVariableInfo = true, |
548 | bool IgnoreUBImplyingAttrs = true); |
549 | |
550 | inline bool isSafeToSpeculativelyExecute(const Instruction *I, |
551 | BasicBlock::iterator CtxI, |
552 | AssumptionCache *AC = nullptr, |
553 | const DominatorTree *DT = nullptr, |
554 | const TargetLibraryInfo *TLI = nullptr, |
555 | bool UseVariableInfo = true, |
556 | bool IgnoreUBImplyingAttrs = true) { |
557 | // Take an iterator, and unwrap it into an Instruction *. |
558 | return isSafeToSpeculativelyExecute(I, CtxI: &*CtxI, AC, DT, TLI, UseVariableInfo, |
559 | IgnoreUBImplyingAttrs); |
560 | } |
561 | |
562 | /// Don't use information from its non-constant operands. This helper is used |
563 | /// when its operands are going to be replaced. |
564 | inline bool isSafeToSpeculativelyExecuteWithVariableReplaced( |
565 | const Instruction *I, bool IgnoreUBImplyingAttrs = true) { |
566 | return isSafeToSpeculativelyExecute(I, CtxI: nullptr, AC: nullptr, DT: nullptr, TLI: nullptr, |
567 | /*UseVariableInfo=*/UseVariableInfo: false, |
568 | IgnoreUBImplyingAttrs); |
569 | } |
570 | |
571 | /// This returns the same result as isSafeToSpeculativelyExecute if Opcode is |
572 | /// the actual opcode of Inst. If the provided and actual opcode differ, the |
573 | /// function (virtually) overrides the opcode of Inst with the provided |
574 | /// Opcode. There are come constraints in this case: |
575 | /// * If Opcode has a fixed number of operands (eg, as binary operators do), |
576 | /// then Inst has to have at least as many leading operands. The function |
577 | /// will ignore all trailing operands beyond that number. |
578 | /// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts |
579 | /// do), then all operands are considered. |
580 | /// * The virtual instruction has to satisfy all typing rules of the provided |
581 | /// Opcode. |
582 | /// * This function is pessimistic in the following sense: If one actually |
583 | /// materialized the virtual instruction, then isSafeToSpeculativelyExecute |
584 | /// may say that the materialized instruction is speculatable whereas this |
585 | /// function may have said that the instruction wouldn't be speculatable. |
586 | /// This behavior is a shortcoming in the current implementation and not |
587 | /// intentional. |
588 | LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode( |
589 | unsigned Opcode, const Instruction *Inst, const Instruction *CtxI = nullptr, |
590 | AssumptionCache *AC = nullptr, const DominatorTree *DT = nullptr, |
591 | const TargetLibraryInfo *TLI = nullptr, bool UseVariableInfo = true, |
592 | bool IgnoreUBImplyingAttrs = true); |
593 | |
594 | /// Returns true if the result or effects of the given instructions \p I |
595 | /// depend values not reachable through the def use graph. |
596 | /// * Memory dependence arises for example if the instruction reads from |
597 | /// memory or may produce effects or undefined behaviour. Memory dependent |
598 | /// instructions generally cannot be reorderd with respect to other memory |
599 | /// dependent instructions. |
600 | /// * Control dependence arises for example if the instruction may fault |
601 | /// if lifted above a throwing call or infinite loop. |
602 | LLVM_ABI bool mayHaveNonDefUseDependency(const Instruction &I); |
603 | |
604 | /// Return true if it is an intrinsic that cannot be speculated but also |
605 | /// cannot trap. |
606 | LLVM_ABI bool isAssumeLikeIntrinsic(const Instruction *I); |
607 | |
608 | /// Return true if it is valid to use the assumptions provided by an |
609 | /// assume intrinsic, I, at the point in the control-flow identified by the |
610 | /// context instruction, CxtI. By default, ephemeral values of the assumption |
611 | /// are treated as an invalid context, to prevent the assumption from being used |
612 | /// to optimize away its argument. If the caller can ensure that this won't |
613 | /// happen, it can call with AllowEphemerals set to true to get more valid |
614 | /// assumptions. |
615 | LLVM_ABI bool isValidAssumeForContext(const Instruction *I, |
616 | const Instruction *CxtI, |
617 | const DominatorTree *DT = nullptr, |
618 | bool AllowEphemerals = false); |
619 | |
620 | enum class OverflowResult { |
621 | /// Always overflows in the direction of signed/unsigned min value. |
622 | AlwaysOverflowsLow, |
623 | /// Always overflows in the direction of signed/unsigned max value. |
624 | AlwaysOverflowsHigh, |
625 | /// May or may not overflow. |
626 | MayOverflow, |
627 | /// Never overflows. |
628 | NeverOverflows, |
629 | }; |
630 | |
631 | LLVM_ABI OverflowResult computeOverflowForUnsignedMul(const Value *LHS, |
632 | const Value *RHS, |
633 | const SimplifyQuery &SQ, |
634 | bool IsNSW = false); |
635 | LLVM_ABI OverflowResult computeOverflowForSignedMul(const Value *LHS, |
636 | const Value *RHS, |
637 | const SimplifyQuery &SQ); |
638 | LLVM_ABI OverflowResult computeOverflowForUnsignedAdd( |
639 | const WithCache<const Value *> &LHS, const WithCache<const Value *> &RHS, |
640 | const SimplifyQuery &SQ); |
641 | LLVM_ABI OverflowResult computeOverflowForSignedAdd( |
642 | const WithCache<const Value *> &LHS, const WithCache<const Value *> &RHS, |
643 | const SimplifyQuery &SQ); |
644 | /// This version also leverages the sign bit of Add if known. |
645 | LLVM_ABI OverflowResult computeOverflowForSignedAdd(const AddOperator *Add, |
646 | const SimplifyQuery &SQ); |
647 | LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, |
648 | const Value *RHS, |
649 | const SimplifyQuery &SQ); |
650 | LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, |
651 | const Value *RHS, |
652 | const SimplifyQuery &SQ); |
653 | |
654 | /// Returns true if the arithmetic part of the \p WO 's result is |
655 | /// used only along the paths control dependent on the computation |
656 | /// not overflowing, \p WO being an <op>.with.overflow intrinsic. |
657 | LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, |
658 | const DominatorTree &DT); |
659 | |
660 | /// Determine the possible constant range of vscale with the given bit width, |
661 | /// based on the vscale_range function attribute. |
662 | LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth); |
663 | |
664 | /// Determine the possible constant range of an integer or vector of integer |
665 | /// value. This is intended as a cheap, non-recursive check. |
666 | LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, |
667 | bool UseInstrInfo = true, |
668 | AssumptionCache *AC = nullptr, |
669 | const Instruction *CtxI = nullptr, |
670 | const DominatorTree *DT = nullptr, |
671 | unsigned Depth = 0); |
672 | |
673 | /// Combine constant ranges from computeConstantRange() and computeKnownBits(). |
674 | LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits( |
675 | const WithCache<const Value *> &V, bool ForSigned, const SimplifyQuery &SQ); |
676 | |
677 | /// Return true if this function can prove that the instruction I will |
678 | /// always transfer execution to one of its successors (including the next |
679 | /// instruction that follows within a basic block). E.g. this is not |
680 | /// guaranteed for function calls that could loop infinitely. |
681 | /// |
682 | /// In other words, this function returns false for instructions that may |
683 | /// transfer execution or fail to transfer execution in a way that is not |
684 | /// captured in the CFG nor in the sequence of instructions within a basic |
685 | /// block. |
686 | /// |
687 | /// Undefined behavior is assumed not to happen, so e.g. division is |
688 | /// guaranteed to transfer execution to the following instruction even |
689 | /// though division by zero might cause undefined behavior. |
690 | LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I); |
691 | |
692 | /// Returns true if this block does not contain a potential implicit exit. |
693 | /// This is equivelent to saying that all instructions within the basic block |
694 | /// are guaranteed to transfer execution to their successor within the basic |
695 | /// block. This has the same assumptions w.r.t. undefined behavior as the |
696 | /// instruction variant of this function. |
697 | LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB); |
698 | |
699 | /// Return true if every instruction in the range (Begin, End) is |
700 | /// guaranteed to transfer execution to its static successor. \p ScanLimit |
701 | /// bounds the search to avoid scanning huge blocks. |
702 | LLVM_ABI bool |
703 | isGuaranteedToTransferExecutionToSuccessor(BasicBlock::const_iterator Begin, |
704 | BasicBlock::const_iterator End, |
705 | unsigned ScanLimit = 32); |
706 | |
707 | /// Same as previous, but with range expressed via iterator_range. |
708 | LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor( |
709 | iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit = 32); |
710 | |
711 | /// Return true if this function can prove that the instruction I |
712 | /// is executed for every iteration of the loop L. |
713 | /// |
714 | /// Note that this currently only considers the loop header. |
715 | LLVM_ABI bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, |
716 | const Loop *L); |
717 | |
718 | /// Return true if \p PoisonOp's user yields poison or raises UB if its |
719 | /// operand \p PoisonOp is poison. |
720 | /// |
721 | /// If \p PoisonOp is a vector or an aggregate and the operation's result is a |
722 | /// single value, any poison element in /p PoisonOp should make the result |
723 | /// poison or raise UB. |
724 | /// |
725 | /// To filter out operands that raise UB on poison, you can use |
726 | /// getGuaranteedNonPoisonOp. |
727 | LLVM_ABI bool propagatesPoison(const Use &PoisonOp); |
728 | |
729 | /// Return true if the given instruction must trigger undefined behavior |
730 | /// when I is executed with any operands which appear in KnownPoison holding |
731 | /// a poison value at the point of execution. |
732 | LLVM_ABI bool mustTriggerUB(const Instruction *I, |
733 | const SmallPtrSetImpl<const Value *> &KnownPoison); |
734 | |
735 | /// Return true if this function can prove that if Inst is executed |
736 | /// and yields a poison value or undef bits, then that will trigger |
737 | /// undefined behavior. |
738 | /// |
739 | /// Note that this currently only considers the basic block that is |
740 | /// the parent of Inst. |
741 | LLVM_ABI bool programUndefinedIfUndefOrPoison(const Instruction *Inst); |
742 | LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst); |
743 | |
744 | /// canCreateUndefOrPoison returns true if Op can create undef or poison from |
745 | /// non-undef & non-poison operands. |
746 | /// For vectors, canCreateUndefOrPoison returns true if there is potential |
747 | /// poison or undef in any element of the result when vectors without |
748 | /// undef/poison poison are given as operands. |
749 | /// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns |
750 | /// true. If Op raises immediate UB but never creates poison or undef |
751 | /// (e.g. sdiv I, 0), canCreatePoison returns false. |
752 | /// |
753 | /// \p ConsiderFlagsAndMetadata controls whether poison producing flags and |
754 | /// metadata on the instruction are considered. This can be used to see if the |
755 | /// instruction could still introduce undef or poison even without poison |
756 | /// generating flags and metadata which might be on the instruction. |
757 | /// (i.e. could the result of Op->dropPoisonGeneratingFlags() still create |
758 | /// poison or undef) |
759 | /// |
760 | /// canCreatePoison returns true if Op can create poison from non-poison |
761 | /// operands. |
762 | LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, |
763 | bool ConsiderFlagsAndMetadata = true); |
764 | LLVM_ABI bool canCreatePoison(const Operator *Op, |
765 | bool ConsiderFlagsAndMetadata = true); |
766 | |
767 | /// Return true if V is poison given that ValAssumedPoison is already poison. |
768 | /// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`, |
769 | /// impliesPoison returns true. |
770 | LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V); |
771 | |
772 | /// Return true if this function can prove that V does not have undef bits |
773 | /// and is never poison. If V is an aggregate value or vector, check whether |
774 | /// all elements (except padding) are not undef or poison. |
775 | /// Note that this is different from canCreateUndefOrPoison because the |
776 | /// function assumes Op's operands are not poison/undef. |
777 | /// |
778 | /// If CtxI and DT are specified this method performs flow-sensitive analysis |
779 | /// and returns true if it is guaranteed to be never undef or poison |
780 | /// immediately before the CtxI. |
781 | LLVM_ABI bool |
782 | isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC = nullptr, |
783 | const Instruction *CtxI = nullptr, |
784 | const DominatorTree *DT = nullptr, |
785 | unsigned Depth = 0); |
786 | |
787 | /// Returns true if V cannot be poison, but may be undef. |
788 | LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, |
789 | AssumptionCache *AC = nullptr, |
790 | const Instruction *CtxI = nullptr, |
791 | const DominatorTree *DT = nullptr, |
792 | unsigned Depth = 0); |
793 | |
794 | inline bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, |
795 | BasicBlock::iterator CtxI, |
796 | const DominatorTree *DT = nullptr, |
797 | unsigned Depth = 0) { |
798 | // Takes an iterator as a position, passes down to Instruction * |
799 | // implementation. |
800 | return isGuaranteedNotToBePoison(V, AC, CtxI: &*CtxI, DT, Depth); |
801 | } |
802 | |
803 | /// Returns true if V cannot be undef, but may be poison. |
804 | LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, |
805 | AssumptionCache *AC = nullptr, |
806 | const Instruction *CtxI = nullptr, |
807 | const DominatorTree *DT = nullptr, |
808 | unsigned Depth = 0); |
809 | |
810 | /// Return true if undefined behavior would provable be executed on the path to |
811 | /// OnPathTo if Root produced a posion result. Note that this doesn't say |
812 | /// anything about whether OnPathTo is actually executed or whether Root is |
813 | /// actually poison. This can be used to assess whether a new use of Root can |
814 | /// be added at a location which is control equivalent with OnPathTo (such as |
815 | /// immediately before it) without introducing UB which didn't previously |
816 | /// exist. Note that a false result conveys no information. |
817 | LLVM_ABI bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, |
818 | Instruction *OnPathTo, |
819 | DominatorTree *DT); |
820 | |
821 | /// Convert an integer comparison with a constant RHS into an equivalent |
822 | /// form with the strictness flipped predicate. Return the new predicate and |
823 | /// corresponding constant RHS if possible. Otherwise return std::nullopt. |
824 | /// E.g., (icmp sgt X, 0) -> (icmp sle X, 1). |
825 | LLVM_ABI std::optional<std::pair<CmpPredicate, Constant *>> |
826 | getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C); |
827 | |
828 | /// Specific patterns of select instructions we can match. |
829 | enum SelectPatternFlavor { |
830 | SPF_UNKNOWN = 0, |
831 | SPF_SMIN, /// Signed minimum |
832 | SPF_UMIN, /// Unsigned minimum |
833 | SPF_SMAX, /// Signed maximum |
834 | SPF_UMAX, /// Unsigned maximum |
835 | SPF_FMINNUM, /// Floating point minnum |
836 | SPF_FMAXNUM, /// Floating point maxnum |
837 | SPF_ABS, /// Absolute value |
838 | SPF_NABS /// Negated absolute value |
839 | }; |
840 | |
841 | /// Behavior when a floating point min/max is given one NaN and one |
842 | /// non-NaN as input. |
843 | enum SelectPatternNaNBehavior { |
844 | SPNB_NA = 0, /// NaN behavior not applicable. |
845 | SPNB_RETURNS_NAN, /// Given one NaN input, returns the NaN. |
846 | SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN. |
847 | SPNB_RETURNS_ANY /// Given one NaN input, can return either (or |
848 | /// it has been determined that no operands can |
849 | /// be NaN). |
850 | }; |
851 | |
852 | struct SelectPatternResult { |
853 | SelectPatternFlavor Flavor; |
854 | SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is |
855 | /// SPF_FMINNUM or SPF_FMAXNUM. |
856 | bool Ordered; /// When implementing this min/max pattern as |
857 | /// fcmp; select, does the fcmp have to be |
858 | /// ordered? |
859 | |
860 | /// Return true if \p SPF is a min or a max pattern. |
861 | static bool isMinOrMax(SelectPatternFlavor SPF) { |
862 | return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS; |
863 | } |
864 | }; |
865 | |
866 | /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind |
867 | /// and providing the out parameter results if we successfully match. |
868 | /// |
869 | /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be |
870 | /// the negation instruction from the idiom. |
871 | /// |
872 | /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does |
873 | /// not match that of the original select. If this is the case, the cast |
874 | /// operation (one of Trunc,SExt,Zext) that must be done to transform the |
875 | /// type of LHS and RHS into the type of V is returned in CastOp. |
876 | /// |
877 | /// For example: |
878 | /// %1 = icmp slt i32 %a, i32 4 |
879 | /// %2 = sext i32 %a to i64 |
880 | /// %3 = select i1 %1, i64 %2, i64 4 |
881 | /// |
882 | /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt |
883 | /// |
884 | LLVM_ABI SelectPatternResult |
885 | matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, |
886 | Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0); |
887 | |
888 | inline SelectPatternResult matchSelectPattern(const Value *V, const Value *&LHS, |
889 | const Value *&RHS) { |
890 | Value *L = const_cast<Value *>(LHS); |
891 | Value *R = const_cast<Value *>(RHS); |
892 | auto Result = matchSelectPattern(V: const_cast<Value *>(V), LHS&: L, RHS&: R); |
893 | LHS = L; |
894 | RHS = R; |
895 | return Result; |
896 | } |
897 | |
898 | /// Determine the pattern that a select with the given compare as its |
899 | /// predicate and given values as its true/false operands would match. |
900 | LLVM_ABI SelectPatternResult matchDecomposedSelectPattern( |
901 | CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, |
902 | FastMathFlags FMF = FastMathFlags(), Instruction::CastOps *CastOp = nullptr, |
903 | unsigned Depth = 0); |
904 | |
905 | /// Determine the pattern for predicate `X Pred Y ? X : Y`. |
906 | LLVM_ABI SelectPatternResult getSelectPattern( |
907 | CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior = SPNB_NA, |
908 | bool Ordered = false); |
909 | |
910 | /// Return the canonical comparison predicate for the specified |
911 | /// minimum/maximum flavor. |
912 | LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, |
913 | bool Ordered = false); |
914 | |
915 | /// Convert given `SPF` to equivalent min/max intrinsic. |
916 | /// Caller must ensure `SPF` is an integer min or max pattern. |
917 | LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF); |
918 | |
919 | /// Return the inverse minimum/maximum flavor of the specified flavor. |
920 | /// For example, signed minimum is the inverse of signed maximum. |
921 | LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF); |
922 | |
923 | LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID); |
924 | |
925 | /// Return the minimum or maximum constant value for the specified integer |
926 | /// min/max flavor and type. |
927 | LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth); |
928 | |
929 | /// Check if the values in \p VL are select instructions that can be converted |
930 | /// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a |
931 | /// conversion is possible, together with a bool indicating whether all select |
932 | /// conditions are only used by the selects. Otherwise return |
933 | /// Intrinsic::not_intrinsic. |
934 | LLVM_ABI std::pair<Intrinsic::ID, bool> |
935 | canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL); |
936 | |
937 | /// Attempt to match a simple first order recurrence cycle of the form: |
938 | /// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge] |
939 | /// %inc = binop %iv, %step |
940 | /// OR |
941 | /// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge] |
942 | /// %inc = binop %step, %iv |
943 | /// |
944 | /// A first order recurrence is a formula with the form: X_n = f(X_(n-1)) |
945 | /// |
946 | /// A couple of notes on subtleties in that definition: |
947 | /// * The Step does not have to be loop invariant. In math terms, it can |
948 | /// be a free variable. We allow recurrences with both constant and |
949 | /// variable coefficients. Callers may wish to filter cases where Step |
950 | /// does not dominate P. |
951 | /// * For non-commutative operators, we will match both forms. This |
952 | /// results in some odd recurrence structures. Callers may wish to filter |
953 | /// out recurrences where the phi is not the LHS of the returned operator. |
954 | /// * Because of the structure matched, the caller can assume as a post |
955 | /// condition of the match the presence of a Loop with P's parent as it's |
956 | /// header *except* in unreachable code. (Dominance decays in unreachable |
957 | /// code.) |
958 | /// |
959 | /// NOTE: This is intentional simple. If you want the ability to analyze |
960 | /// non-trivial loop conditons, see ScalarEvolution instead. |
961 | LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, |
962 | Value *&Start, Value *&Step); |
963 | |
964 | /// Analogous to the above, but starting from the binary operator |
965 | LLVM_ABI bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, |
966 | Value *&Start, Value *&Step); |
967 | |
968 | /// Return true if RHS is known to be implied true by LHS. Return false if |
969 | /// RHS is known to be implied false by LHS. Otherwise, return std::nullopt if |
970 | /// no implication can be made. A & B must be i1 (boolean) values or a vector of |
971 | /// such values. Note that the truth table for implication is the same as <=u on |
972 | /// i1 values (but not |
973 | /// <=s!). The truth table for both is: |
974 | /// | T | F (B) |
975 | /// T | T | F |
976 | /// F | T | T |
977 | /// (A) |
978 | LLVM_ABI std::optional<bool> |
979 | isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, |
980 | bool LHSIsTrue = true, unsigned Depth = 0); |
981 | LLVM_ABI std::optional<bool> |
982 | isImpliedCondition(const Value *LHS, CmpPredicate RHSPred, const Value *RHSOp0, |
983 | const Value *RHSOp1, const DataLayout &DL, |
984 | bool LHSIsTrue = true, unsigned Depth = 0); |
985 | |
986 | /// Return the boolean condition value in the context of the given instruction |
987 | /// if it is known based on dominating conditions. |
988 | LLVM_ABI std::optional<bool> |
989 | isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, |
990 | const DataLayout &DL); |
991 | LLVM_ABI std::optional<bool> |
992 | isImpliedByDomCondition(CmpPredicate Pred, const Value *LHS, const Value *RHS, |
993 | const Instruction *ContextI, const DataLayout &DL); |
994 | |
995 | /// Call \p InsertAffected on all Values whose known bits / value may be |
996 | /// affected by the condition \p Cond. Used by AssumptionCache and |
997 | /// DomConditionCache. |
998 | LLVM_ABI void |
999 | findValuesAffectedByCondition(Value *Cond, bool IsAssume, |
1000 | function_ref<void(Value *)> InsertAffected); |
1001 | |
1002 | } // end namespace llvm |
1003 | |
1004 | #endif // LLVM_ANALYSIS_VALUETRACKING_H |
1005 |
Definitions
- MaxAnalysisRecursionDepth
- MaxLookupSearchDepth
- GetPointerBaseWithConstantOffset
- GetPointerBaseWithConstantOffset
- ConstantDataArraySlice
- move
- operator[]
- getArgumentAliasingToReturnedPointer
- getUnderlyingObject
- findAllocaForValue
- isSafeToSpeculativelyExecute
- isSafeToSpeculativelyExecuteWithVariableReplaced
- OverflowResult
- isGuaranteedNotToBePoison
- SelectPatternFlavor
- SelectPatternNaNBehavior
- SelectPatternResult
- isMinOrMax
Learn to use CMake with our Intro Training
Find out more