1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InstrTypes.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Value.h"
43#include "llvm/Support/Casting.h"
44#include <cstdint>
45
46namespace llvm {
47namespace PatternMatch {
48
49template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
51}
52
53template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55}
56
57template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65};
66
67template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69}
70
71template <typename SubPattern_t> struct AllowReassoc_match {
72 SubPattern_t SubPattern;
73
74 AllowReassoc_match(const SubPattern_t &SP) : SubPattern(SP) {}
75
76 template <typename OpTy> bool match(OpTy *V) {
77 auto *I = dyn_cast<FPMathOperator>(V);
78 return I && I->hasAllowReassoc() && SubPattern.match(I);
79 }
80};
81
82template <typename T>
83inline AllowReassoc_match<T> m_AllowReassoc(const T &SubPattern) {
84 return SubPattern;
85}
86
87template <typename Class> struct class_match {
88 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
89};
90
91/// Match an arbitrary value and ignore it.
92inline class_match<Value> m_Value() { return class_match<Value>(); }
93
94/// Match an arbitrary unary operation and ignore it.
95inline class_match<UnaryOperator> m_UnOp() {
96 return class_match<UnaryOperator>();
97}
98
99/// Match an arbitrary binary operation and ignore it.
100inline class_match<BinaryOperator> m_BinOp() {
101 return class_match<BinaryOperator>();
102}
103
104/// Matches any compare instruction and ignore it.
105inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
106
107struct undef_match {
108 static bool check(const Value *V) {
109 if (isa<UndefValue>(Val: V))
110 return true;
111
112 const auto *CA = dyn_cast<ConstantAggregate>(Val: V);
113 if (!CA)
114 return false;
115
116 SmallPtrSet<const ConstantAggregate *, 8> Seen;
117 SmallVector<const ConstantAggregate *, 8> Worklist;
118
119 // Either UndefValue, PoisonValue, or an aggregate that only contains
120 // these is accepted by matcher.
121 // CheckValue returns false if CA cannot satisfy this constraint.
122 auto CheckValue = [&](const ConstantAggregate *CA) {
123 for (const Value *Op : CA->operand_values()) {
124 if (isa<UndefValue>(Val: Op))
125 continue;
126
127 const auto *CA = dyn_cast<ConstantAggregate>(Val: Op);
128 if (!CA)
129 return false;
130 if (Seen.insert(Ptr: CA).second)
131 Worklist.emplace_back(Args&: CA);
132 }
133
134 return true;
135 };
136
137 if (!CheckValue(CA))
138 return false;
139
140 while (!Worklist.empty()) {
141 if (!CheckValue(Worklist.pop_back_val()))
142 return false;
143 }
144 return true;
145 }
146 template <typename ITy> bool match(ITy *V) { return check(V); }
147};
148
149/// Match an arbitrary undef constant. This matches poison as well.
150/// If this is an aggregate and contains a non-aggregate element that is
151/// neither undef nor poison, the aggregate is not matched.
152inline auto m_Undef() { return undef_match(); }
153
154/// Match an arbitrary UndefValue constant.
155inline class_match<UndefValue> m_UndefValue() {
156 return class_match<UndefValue>();
157}
158
159/// Match an arbitrary poison constant.
160inline class_match<PoisonValue> m_Poison() {
161 return class_match<PoisonValue>();
162}
163
164/// Match an arbitrary Constant and ignore it.
165inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
166
167/// Match an arbitrary ConstantInt and ignore it.
168inline class_match<ConstantInt> m_ConstantInt() {
169 return class_match<ConstantInt>();
170}
171
172/// Match an arbitrary ConstantFP and ignore it.
173inline class_match<ConstantFP> m_ConstantFP() {
174 return class_match<ConstantFP>();
175}
176
177struct constantexpr_match {
178 template <typename ITy> bool match(ITy *V) {
179 auto *C = dyn_cast<Constant>(V);
180 return C && (isa<ConstantExpr>(C) || C->containsConstantExpression());
181 }
182};
183
184/// Match a constant expression or a constant that contains a constant
185/// expression.
186inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); }
187
188/// Match an arbitrary basic block value and ignore it.
189inline class_match<BasicBlock> m_BasicBlock() {
190 return class_match<BasicBlock>();
191}
192
193/// Inverting matcher
194template <typename Ty> struct match_unless {
195 Ty M;
196
197 match_unless(const Ty &Matcher) : M(Matcher) {}
198
199 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
200};
201
202/// Match if the inner matcher does *NOT* match.
203template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
204 return match_unless<Ty>(M);
205}
206
207/// Matching combinators
208template <typename LTy, typename RTy> struct match_combine_or {
209 LTy L;
210 RTy R;
211
212 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
213
214 template <typename ITy> bool match(ITy *V) {
215 if (L.match(V))
216 return true;
217 if (R.match(V))
218 return true;
219 return false;
220 }
221};
222
223template <typename LTy, typename RTy> struct match_combine_and {
224 LTy L;
225 RTy R;
226
227 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
228
229 template <typename ITy> bool match(ITy *V) {
230 if (L.match(V))
231 if (R.match(V))
232 return true;
233 return false;
234 }
235};
236
237/// Combine two pattern matchers matching L || R
238template <typename LTy, typename RTy>
239inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
240 return match_combine_or<LTy, RTy>(L, R);
241}
242
243/// Combine two pattern matchers matching L && R
244template <typename LTy, typename RTy>
245inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
246 return match_combine_and<LTy, RTy>(L, R);
247}
248
249struct apint_match {
250 const APInt *&Res;
251 bool AllowPoison;
252
253 apint_match(const APInt *&Res, bool AllowPoison)
254 : Res(Res), AllowPoison(AllowPoison) {}
255
256 template <typename ITy> bool match(ITy *V) {
257 if (auto *CI = dyn_cast<ConstantInt>(V)) {
258 Res = &CI->getValue();
259 return true;
260 }
261 if (V->getType()->isVectorTy())
262 if (const auto *C = dyn_cast<Constant>(V))
263 if (auto *CI =
264 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison))) {
265 Res = &CI->getValue();
266 return true;
267 }
268 return false;
269 }
270};
271// Either constexpr if or renaming ConstantFP::getValueAPF to
272// ConstantFP::getValue is needed to do it via single template
273// function for both apint/apfloat.
274struct apfloat_match {
275 const APFloat *&Res;
276 bool AllowPoison;
277
278 apfloat_match(const APFloat *&Res, bool AllowPoison)
279 : Res(Res), AllowPoison(AllowPoison) {}
280
281 template <typename ITy> bool match(ITy *V) {
282 if (auto *CI = dyn_cast<ConstantFP>(V)) {
283 Res = &CI->getValueAPF();
284 return true;
285 }
286 if (V->getType()->isVectorTy())
287 if (const auto *C = dyn_cast<Constant>(V))
288 if (auto *CI =
289 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowPoison))) {
290 Res = &CI->getValueAPF();
291 return true;
292 }
293 return false;
294 }
295};
296
297/// Match a ConstantInt or splatted ConstantVector, binding the
298/// specified pointer to the contained APInt.
299inline apint_match m_APInt(const APInt *&Res) {
300 // Forbid poison by default to maintain previous behavior.
301 return apint_match(Res, /* AllowPoison */ false);
302}
303
304/// Match APInt while allowing poison in splat vector constants.
305inline apint_match m_APIntAllowPoison(const APInt *&Res) {
306 return apint_match(Res, /* AllowPoison */ true);
307}
308
309/// Match APInt while forbidding poison in splat vector constants.
310inline apint_match m_APIntForbidPoison(const APInt *&Res) {
311 return apint_match(Res, /* AllowPoison */ false);
312}
313
314/// Match a ConstantFP or splatted ConstantVector, binding the
315/// specified pointer to the contained APFloat.
316inline apfloat_match m_APFloat(const APFloat *&Res) {
317 // Forbid undefs by default to maintain previous behavior.
318 return apfloat_match(Res, /* AllowPoison */ false);
319}
320
321/// Match APFloat while allowing poison in splat vector constants.
322inline apfloat_match m_APFloatAllowPoison(const APFloat *&Res) {
323 return apfloat_match(Res, /* AllowPoison */ true);
324}
325
326/// Match APFloat while forbidding poison in splat vector constants.
327inline apfloat_match m_APFloatForbidPoison(const APFloat *&Res) {
328 return apfloat_match(Res, /* AllowPoison */ false);
329}
330
331template <int64_t Val> struct constantint_match {
332 template <typename ITy> bool match(ITy *V) {
333 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
334 const APInt &CIV = CI->getValue();
335 if (Val >= 0)
336 return CIV == static_cast<uint64_t>(Val);
337 // If Val is negative, and CI is shorter than it, truncate to the right
338 // number of bits. If it is larger, then we have to sign extend. Just
339 // compare their negated values.
340 return -CIV == -Val;
341 }
342 return false;
343 }
344};
345
346/// Match a ConstantInt with a specific value.
347template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
348 return constantint_match<Val>();
349}
350
351/// This helper class is used to match constant scalars, vector splats,
352/// and fixed width vectors that satisfy a specified predicate.
353/// For fixed width vector constants, poison elements are ignored if AllowPoison
354/// is true.
355template <typename Predicate, typename ConstantVal, bool AllowPoison>
356struct cstval_pred_ty : public Predicate {
357 template <typename ITy> bool match(ITy *V) {
358 if (const auto *CV = dyn_cast<ConstantVal>(V))
359 return this->isValue(CV->getValue());
360 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
361 if (const auto *C = dyn_cast<Constant>(V)) {
362 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
363 return this->isValue(CV->getValue());
364
365 // Number of elements of a scalable vector unknown at compile time
366 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
367 if (!FVTy)
368 return false;
369
370 // Non-splat vector constant: check each element for a match.
371 unsigned NumElts = FVTy->getNumElements();
372 assert(NumElts != 0 && "Constant vector with no elements?");
373 bool HasNonPoisonElements = false;
374 for (unsigned i = 0; i != NumElts; ++i) {
375 Constant *Elt = C->getAggregateElement(i);
376 if (!Elt)
377 return false;
378 if (AllowPoison && isa<PoisonValue>(Val: Elt))
379 continue;
380 auto *CV = dyn_cast<ConstantVal>(Elt);
381 if (!CV || !this->isValue(CV->getValue()))
382 return false;
383 HasNonPoisonElements = true;
384 }
385 return HasNonPoisonElements;
386 }
387 }
388 return false;
389 }
390};
391
392/// specialization of cstval_pred_ty for ConstantInt
393template <typename Predicate, bool AllowPoison = true>
394using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt, AllowPoison>;
395
396/// specialization of cstval_pred_ty for ConstantFP
397template <typename Predicate>
398using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP,
399 /*AllowPoison=*/true>;
400
401/// This helper class is used to match scalar and vector constants that
402/// satisfy a specified predicate, and bind them to an APInt.
403template <typename Predicate> struct api_pred_ty : public Predicate {
404 const APInt *&Res;
405
406 api_pred_ty(const APInt *&R) : Res(R) {}
407
408 template <typename ITy> bool match(ITy *V) {
409 if (const auto *CI = dyn_cast<ConstantInt>(V))
410 if (this->isValue(CI->getValue())) {
411 Res = &CI->getValue();
412 return true;
413 }
414 if (V->getType()->isVectorTy())
415 if (const auto *C = dyn_cast<Constant>(V))
416 if (auto *CI = dyn_cast_or_null<ConstantInt>(
417 C->getSplatValue(/*AllowPoison=*/true)))
418 if (this->isValue(CI->getValue())) {
419 Res = &CI->getValue();
420 return true;
421 }
422
423 return false;
424 }
425};
426
427/// This helper class is used to match scalar and vector constants that
428/// satisfy a specified predicate, and bind them to an APFloat.
429/// Poison is allowed in splat vector constants.
430template <typename Predicate> struct apf_pred_ty : public Predicate {
431 const APFloat *&Res;
432
433 apf_pred_ty(const APFloat *&R) : Res(R) {}
434
435 template <typename ITy> bool match(ITy *V) {
436 if (const auto *CI = dyn_cast<ConstantFP>(V))
437 if (this->isValue(CI->getValue())) {
438 Res = &CI->getValue();
439 return true;
440 }
441 if (V->getType()->isVectorTy())
442 if (const auto *C = dyn_cast<Constant>(V))
443 if (auto *CI = dyn_cast_or_null<ConstantFP>(
444 C->getSplatValue(/* AllowPoison */ true)))
445 if (this->isValue(CI->getValue())) {
446 Res = &CI->getValue();
447 return true;
448 }
449
450 return false;
451 }
452};
453
454///////////////////////////////////////////////////////////////////////////////
455//
456// Encapsulate constant value queries for use in templated predicate matchers.
457// This allows checking if constants match using compound predicates and works
458// with vector constants, possibly with relaxed constraints. For example, ignore
459// undef values.
460//
461///////////////////////////////////////////////////////////////////////////////
462
463struct is_any_apint {
464 bool isValue(const APInt &C) { return true; }
465};
466/// Match an integer or vector with any integral constant.
467/// For vectors, this includes constants with undefined elements.
468inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
469 return cst_pred_ty<is_any_apint>();
470}
471
472struct is_shifted_mask {
473 bool isValue(const APInt &C) { return C.isShiftedMask(); }
474};
475
476inline cst_pred_ty<is_shifted_mask> m_ShiftedMask() {
477 return cst_pred_ty<is_shifted_mask>();
478}
479
480struct is_all_ones {
481 bool isValue(const APInt &C) { return C.isAllOnes(); }
482};
483/// Match an integer or vector with all bits set.
484/// For vectors, this includes constants with undefined elements.
485inline cst_pred_ty<is_all_ones> m_AllOnes() {
486 return cst_pred_ty<is_all_ones>();
487}
488
489inline cst_pred_ty<is_all_ones, false> m_AllOnesForbidPoison() {
490 return cst_pred_ty<is_all_ones, false>();
491}
492
493struct is_maxsignedvalue {
494 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
495};
496/// Match an integer or vector with values having all bits except for the high
497/// bit set (0x7f...).
498/// For vectors, this includes constants with undefined elements.
499inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
500 return cst_pred_ty<is_maxsignedvalue>();
501}
502inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
503 return V;
504}
505
506struct is_negative {
507 bool isValue(const APInt &C) { return C.isNegative(); }
508};
509/// Match an integer or vector of negative values.
510/// For vectors, this includes constants with undefined elements.
511inline cst_pred_ty<is_negative> m_Negative() {
512 return cst_pred_ty<is_negative>();
513}
514inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
515
516struct is_nonnegative {
517 bool isValue(const APInt &C) { return C.isNonNegative(); }
518};
519/// Match an integer or vector of non-negative values.
520/// For vectors, this includes constants with undefined elements.
521inline cst_pred_ty<is_nonnegative> m_NonNegative() {
522 return cst_pred_ty<is_nonnegative>();
523}
524inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
525
526struct is_strictlypositive {
527 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
528};
529/// Match an integer or vector of strictly positive values.
530/// For vectors, this includes constants with undefined elements.
531inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
532 return cst_pred_ty<is_strictlypositive>();
533}
534inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
535 return V;
536}
537
538struct is_nonpositive {
539 bool isValue(const APInt &C) { return C.isNonPositive(); }
540};
541/// Match an integer or vector of non-positive values.
542/// For vectors, this includes constants with undefined elements.
543inline cst_pred_ty<is_nonpositive> m_NonPositive() {
544 return cst_pred_ty<is_nonpositive>();
545}
546inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
547
548struct is_one {
549 bool isValue(const APInt &C) { return C.isOne(); }
550};
551/// Match an integer 1 or a vector with all elements equal to 1.
552/// For vectors, this includes constants with undefined elements.
553inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
554
555struct is_zero_int {
556 bool isValue(const APInt &C) { return C.isZero(); }
557};
558/// Match an integer 0 or a vector with all elements equal to 0.
559/// For vectors, this includes constants with undefined elements.
560inline cst_pred_ty<is_zero_int> m_ZeroInt() {
561 return cst_pred_ty<is_zero_int>();
562}
563
564struct is_zero {
565 template <typename ITy> bool match(ITy *V) {
566 auto *C = dyn_cast<Constant>(V);
567 // FIXME: this should be able to do something for scalable vectors
568 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
569 }
570};
571/// Match any null constant or a vector with all elements equal to 0.
572/// For vectors, this includes constants with undefined elements.
573inline is_zero m_Zero() { return is_zero(); }
574
575struct is_power2 {
576 bool isValue(const APInt &C) { return C.isPowerOf2(); }
577};
578/// Match an integer or vector power-of-2.
579/// For vectors, this includes constants with undefined elements.
580inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
581inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
582
583struct is_negated_power2 {
584 bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
585};
586/// Match a integer or vector negated power-of-2.
587/// For vectors, this includes constants with undefined elements.
588inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
589 return cst_pred_ty<is_negated_power2>();
590}
591inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
592 return V;
593}
594
595struct is_negated_power2_or_zero {
596 bool isValue(const APInt &C) { return !C || C.isNegatedPowerOf2(); }
597};
598/// Match a integer or vector negated power-of-2.
599/// For vectors, this includes constants with undefined elements.
600inline cst_pred_ty<is_negated_power2_or_zero> m_NegatedPower2OrZero() {
601 return cst_pred_ty<is_negated_power2_or_zero>();
602}
603inline api_pred_ty<is_negated_power2_or_zero>
604m_NegatedPower2OrZero(const APInt *&V) {
605 return V;
606}
607
608struct is_power2_or_zero {
609 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
610};
611/// Match an integer or vector of 0 or power-of-2 values.
612/// For vectors, this includes constants with undefined elements.
613inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
614 return cst_pred_ty<is_power2_or_zero>();
615}
616inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
617 return V;
618}
619
620struct is_sign_mask {
621 bool isValue(const APInt &C) { return C.isSignMask(); }
622};
623/// Match an integer or vector with only the sign bit(s) set.
624/// For vectors, this includes constants with undefined elements.
625inline cst_pred_ty<is_sign_mask> m_SignMask() {
626 return cst_pred_ty<is_sign_mask>();
627}
628
629struct is_lowbit_mask {
630 bool isValue(const APInt &C) { return C.isMask(); }
631};
632/// Match an integer or vector with only the low bit(s) set.
633/// For vectors, this includes constants with undefined elements.
634inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
635 return cst_pred_ty<is_lowbit_mask>();
636}
637inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
638
639struct is_lowbit_mask_or_zero {
640 bool isValue(const APInt &C) { return !C || C.isMask(); }
641};
642/// Match an integer or vector with only the low bit(s) set.
643/// For vectors, this includes constants with undefined elements.
644inline cst_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero() {
645 return cst_pred_ty<is_lowbit_mask_or_zero>();
646}
647inline api_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero(const APInt *&V) {
648 return V;
649}
650
651struct icmp_pred_with_threshold {
652 ICmpInst::Predicate Pred;
653 const APInt *Thr;
654 bool isValue(const APInt &C) { return ICmpInst::compare(LHS: C, RHS: *Thr, Pred); }
655};
656/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
657/// to Threshold. For vectors, this includes constants with undefined elements.
658inline cst_pred_ty<icmp_pred_with_threshold>
659m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
660 cst_pred_ty<icmp_pred_with_threshold> P;
661 P.Pred = Predicate;
662 P.Thr = &Threshold;
663 return P;
664}
665
666struct is_nan {
667 bool isValue(const APFloat &C) { return C.isNaN(); }
668};
669/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
670/// For vectors, this includes constants with undefined elements.
671inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); }
672
673struct is_nonnan {
674 bool isValue(const APFloat &C) { return !C.isNaN(); }
675};
676/// Match a non-NaN FP constant.
677/// For vectors, this includes constants with undefined elements.
678inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
679 return cstfp_pred_ty<is_nonnan>();
680}
681
682struct is_inf {
683 bool isValue(const APFloat &C) { return C.isInfinity(); }
684};
685/// Match a positive or negative infinity FP constant.
686/// For vectors, this includes constants with undefined elements.
687inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); }
688
689struct is_noninf {
690 bool isValue(const APFloat &C) { return !C.isInfinity(); }
691};
692/// Match a non-infinity FP constant, i.e. finite or NaN.
693/// For vectors, this includes constants with undefined elements.
694inline cstfp_pred_ty<is_noninf> m_NonInf() {
695 return cstfp_pred_ty<is_noninf>();
696}
697
698struct is_finite {
699 bool isValue(const APFloat &C) { return C.isFinite(); }
700};
701/// Match a finite FP constant, i.e. not infinity or NaN.
702/// For vectors, this includes constants with undefined elements.
703inline cstfp_pred_ty<is_finite> m_Finite() {
704 return cstfp_pred_ty<is_finite>();
705}
706inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
707
708struct is_finitenonzero {
709 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
710};
711/// Match a finite non-zero FP constant.
712/// For vectors, this includes constants with undefined elements.
713inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
714 return cstfp_pred_ty<is_finitenonzero>();
715}
716inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
717 return V;
718}
719
720struct is_any_zero_fp {
721 bool isValue(const APFloat &C) { return C.isZero(); }
722};
723/// Match a floating-point negative zero or positive zero.
724/// For vectors, this includes constants with undefined elements.
725inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
726 return cstfp_pred_ty<is_any_zero_fp>();
727}
728
729struct is_pos_zero_fp {
730 bool isValue(const APFloat &C) { return C.isPosZero(); }
731};
732/// Match a floating-point positive zero.
733/// For vectors, this includes constants with undefined elements.
734inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
735 return cstfp_pred_ty<is_pos_zero_fp>();
736}
737
738struct is_neg_zero_fp {
739 bool isValue(const APFloat &C) { return C.isNegZero(); }
740};
741/// Match a floating-point negative zero.
742/// For vectors, this includes constants with undefined elements.
743inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
744 return cstfp_pred_ty<is_neg_zero_fp>();
745}
746
747struct is_non_zero_fp {
748 bool isValue(const APFloat &C) { return C.isNonZero(); }
749};
750/// Match a floating-point non-zero.
751/// For vectors, this includes constants with undefined elements.
752inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
753 return cstfp_pred_ty<is_non_zero_fp>();
754}
755
756///////////////////////////////////////////////////////////////////////////////
757
758template <typename Class> struct bind_ty {
759 Class *&VR;
760
761 bind_ty(Class *&V) : VR(V) {}
762
763 template <typename ITy> bool match(ITy *V) {
764 if (auto *CV = dyn_cast<Class>(V)) {
765 VR = CV;
766 return true;
767 }
768 return false;
769 }
770};
771
772/// Match a value, capturing it if we match.
773inline bind_ty<Value> m_Value(Value *&V) { return V; }
774inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
775
776/// Match an instruction, capturing it if we match.
777inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
778/// Match a unary operator, capturing it if we match.
779inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
780/// Match a binary operator, capturing it if we match.
781inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
782/// Match a with overflow intrinsic, capturing it if we match.
783inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) {
784 return I;
785}
786inline bind_ty<const WithOverflowInst>
787m_WithOverflowInst(const WithOverflowInst *&I) {
788 return I;
789}
790
791/// Match an UndefValue, capturing the value if we match.
792inline bind_ty<UndefValue> m_UndefValue(UndefValue *&U) { return U; }
793
794/// Match a Constant, capturing the value if we match.
795inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
796
797/// Match a ConstantInt, capturing the value if we match.
798inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
799
800/// Match a ConstantFP, capturing the value if we match.
801inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
802
803/// Match a ConstantExpr, capturing the value if we match.
804inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
805
806/// Match a basic block value, capturing it if we match.
807inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
808inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
809 return V;
810}
811
812/// Match an arbitrary immediate Constant and ignore it.
813inline match_combine_and<class_match<Constant>,
814 match_unless<constantexpr_match>>
815m_ImmConstant() {
816 return m_CombineAnd(L: m_Constant(), R: m_Unless(M: m_ConstantExpr()));
817}
818
819/// Match an immediate Constant, capturing the value if we match.
820inline match_combine_and<bind_ty<Constant>,
821 match_unless<constantexpr_match>>
822m_ImmConstant(Constant *&C) {
823 return m_CombineAnd(L: m_Constant(C), R: m_Unless(M: m_ConstantExpr()));
824}
825
826/// Match a specified Value*.
827struct specificval_ty {
828 const Value *Val;
829
830 specificval_ty(const Value *V) : Val(V) {}
831
832 template <typename ITy> bool match(ITy *V) { return V == Val; }
833};
834
835/// Match if we have a specific specified value.
836inline specificval_ty m_Specific(const Value *V) { return V; }
837
838/// Stores a reference to the Value *, not the Value * itself,
839/// thus can be used in commutative matchers.
840template <typename Class> struct deferredval_ty {
841 Class *const &Val;
842
843 deferredval_ty(Class *const &V) : Val(V) {}
844
845 template <typename ITy> bool match(ITy *const V) { return V == Val; }
846};
847
848/// Like m_Specific(), but works if the specific value to match is determined
849/// as part of the same match() expression. For example:
850/// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
851/// bind X before the pattern match starts.
852/// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
853/// whichever value m_Value(X) populated.
854inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
855inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
856 return V;
857}
858
859/// Match a specified floating point value or vector of all elements of
860/// that value.
861struct specific_fpval {
862 double Val;
863
864 specific_fpval(double V) : Val(V) {}
865
866 template <typename ITy> bool match(ITy *V) {
867 if (const auto *CFP = dyn_cast<ConstantFP>(V))
868 return CFP->isExactlyValue(Val);
869 if (V->getType()->isVectorTy())
870 if (const auto *C = dyn_cast<Constant>(V))
871 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
872 return CFP->isExactlyValue(Val);
873 return false;
874 }
875};
876
877/// Match a specific floating point value or vector with all elements
878/// equal to the value.
879inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
880
881/// Match a float 1.0 or vector with all elements equal to 1.0.
882inline specific_fpval m_FPOne() { return m_SpecificFP(V: 1.0); }
883
884struct bind_const_intval_ty {
885 uint64_t &VR;
886
887 bind_const_intval_ty(uint64_t &V) : VR(V) {}
888
889 template <typename ITy> bool match(ITy *V) {
890 if (const auto *CV = dyn_cast<ConstantInt>(V))
891 if (CV->getValue().ule(UINT64_MAX)) {
892 VR = CV->getZExtValue();
893 return true;
894 }
895 return false;
896 }
897};
898
899/// Match a specified integer value or vector of all elements of that
900/// value.
901template <bool AllowPoison> struct specific_intval {
902 const APInt &Val;
903
904 specific_intval(const APInt &V) : Val(V) {}
905
906 template <typename ITy> bool match(ITy *V) {
907 const auto *CI = dyn_cast<ConstantInt>(V);
908 if (!CI && V->getType()->isVectorTy())
909 if (const auto *C = dyn_cast<Constant>(V))
910 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison));
911
912 return CI && APInt::isSameValue(I1: CI->getValue(), I2: Val);
913 }
914};
915
916template <bool AllowPoison> struct specific_intval64 {
917 uint64_t Val;
918
919 specific_intval64(uint64_t V) : Val(V) {}
920
921 template <typename ITy> bool match(ITy *V) {
922 const auto *CI = dyn_cast<ConstantInt>(V);
923 if (!CI && V->getType()->isVectorTy())
924 if (const auto *C = dyn_cast<Constant>(V))
925 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison));
926
927 return CI && CI->getValue() == Val;
928 }
929};
930
931/// Match a specific integer value or vector with all elements equal to
932/// the value.
933inline specific_intval<false> m_SpecificInt(const APInt &V) {
934 return specific_intval<false>(V);
935}
936
937inline specific_intval64<false> m_SpecificInt(uint64_t V) {
938 return specific_intval64<false>(V);
939}
940
941inline specific_intval<true> m_SpecificIntAllowPoison(const APInt &V) {
942 return specific_intval<true>(V);
943}
944
945inline specific_intval64<true> m_SpecificIntAllowPoison(uint64_t V) {
946 return specific_intval64<true>(V);
947}
948
949/// Match a ConstantInt and bind to its value. This does not match
950/// ConstantInts wider than 64-bits.
951inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
952
953/// Match a specified basic block value.
954struct specific_bbval {
955 BasicBlock *Val;
956
957 specific_bbval(BasicBlock *Val) : Val(Val) {}
958
959 template <typename ITy> bool match(ITy *V) {
960 const auto *BB = dyn_cast<BasicBlock>(V);
961 return BB && BB == Val;
962 }
963};
964
965/// Match a specific basic block value.
966inline specific_bbval m_SpecificBB(BasicBlock *BB) {
967 return specific_bbval(BB);
968}
969
970/// A commutative-friendly version of m_Specific().
971inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
972 return BB;
973}
974inline deferredval_ty<const BasicBlock>
975m_Deferred(const BasicBlock *const &BB) {
976 return BB;
977}
978
979//===----------------------------------------------------------------------===//
980// Matcher for any binary operator.
981//
982template <typename LHS_t, typename RHS_t, bool Commutable = false>
983struct AnyBinaryOp_match {
984 LHS_t L;
985 RHS_t R;
986
987 // The evaluation order is always stable, regardless of Commutability.
988 // The LHS is always matched first.
989 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
990
991 template <typename OpTy> bool match(OpTy *V) {
992 if (auto *I = dyn_cast<BinaryOperator>(V))
993 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
994 (Commutable && L.match(I->getOperand(1)) &&
995 R.match(I->getOperand(0)));
996 return false;
997 }
998};
999
1000template <typename LHS, typename RHS>
1001inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
1002 return AnyBinaryOp_match<LHS, RHS>(L, R);
1003}
1004
1005//===----------------------------------------------------------------------===//
1006// Matcher for any unary operator.
1007// TODO fuse unary, binary matcher into n-ary matcher
1008//
1009template <typename OP_t> struct AnyUnaryOp_match {
1010 OP_t X;
1011
1012 AnyUnaryOp_match(const OP_t &X) : X(X) {}
1013
1014 template <typename OpTy> bool match(OpTy *V) {
1015 if (auto *I = dyn_cast<UnaryOperator>(V))
1016 return X.match(I->getOperand(0));
1017 return false;
1018 }
1019};
1020
1021template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
1022 return AnyUnaryOp_match<OP_t>(X);
1023}
1024
1025//===----------------------------------------------------------------------===//
1026// Matchers for specific binary operators.
1027//
1028
1029template <typename LHS_t, typename RHS_t, unsigned Opcode,
1030 bool Commutable = false>
1031struct BinaryOp_match {
1032 LHS_t L;
1033 RHS_t R;
1034
1035 // The evaluation order is always stable, regardless of Commutability.
1036 // The LHS is always matched first.
1037 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1038
1039 template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
1040 if (V->getValueID() == Value::InstructionVal + Opc) {
1041 auto *I = cast<BinaryOperator>(V);
1042 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1043 (Commutable && L.match(I->getOperand(1)) &&
1044 R.match(I->getOperand(0)));
1045 }
1046 return false;
1047 }
1048
1049 template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
1050};
1051
1052template <typename LHS, typename RHS>
1053inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
1054 const RHS &R) {
1055 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
1056}
1057
1058template <typename LHS, typename RHS>
1059inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
1060 const RHS &R) {
1061 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
1062}
1063
1064template <typename LHS, typename RHS>
1065inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
1066 const RHS &R) {
1067 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
1068}
1069
1070template <typename LHS, typename RHS>
1071inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
1072 const RHS &R) {
1073 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1074}
1075
1076template <typename Op_t> struct FNeg_match {
1077 Op_t X;
1078
1079 FNeg_match(const Op_t &Op) : X(Op) {}
1080 template <typename OpTy> bool match(OpTy *V) {
1081 auto *FPMO = dyn_cast<FPMathOperator>(V);
1082 if (!FPMO)
1083 return false;
1084
1085 if (FPMO->getOpcode() == Instruction::FNeg)
1086 return X.match(FPMO->getOperand(0));
1087
1088 if (FPMO->getOpcode() == Instruction::FSub) {
1089 if (FPMO->hasNoSignedZeros()) {
1090 // With 'nsz', any zero goes.
1091 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1092 return false;
1093 } else {
1094 // Without 'nsz', we need fsub -0.0, X exactly.
1095 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1096 return false;
1097 }
1098
1099 return X.match(FPMO->getOperand(1));
1100 }
1101
1102 return false;
1103 }
1104};
1105
1106/// Match 'fneg X' as 'fsub -0.0, X'.
1107template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) {
1108 return FNeg_match<OpTy>(X);
1109}
1110
1111/// Match 'fneg X' as 'fsub +-0.0, X'.
1112template <typename RHS>
1113inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1114m_FNegNSZ(const RHS &X) {
1115 return m_FSub(m_AnyZeroFP(), X);
1116}
1117
1118template <typename LHS, typename RHS>
1119inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1120 const RHS &R) {
1121 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1122}
1123
1124template <typename LHS, typename RHS>
1125inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1126 const RHS &R) {
1127 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1128}
1129
1130template <typename LHS, typename RHS>
1131inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1132 const RHS &R) {
1133 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1134}
1135
1136template <typename LHS, typename RHS>
1137inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1138 const RHS &R) {
1139 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1140}
1141
1142template <typename LHS, typename RHS>
1143inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1144 const RHS &R) {
1145 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1146}
1147
1148template <typename LHS, typename RHS>
1149inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1150 const RHS &R) {
1151 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1152}
1153
1154template <typename LHS, typename RHS>
1155inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1156 const RHS &R) {
1157 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1158}
1159
1160template <typename LHS, typename RHS>
1161inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1162 const RHS &R) {
1163 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1164}
1165
1166template <typename LHS, typename RHS>
1167inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1168 const RHS &R) {
1169 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1170}
1171
1172template <typename LHS, typename RHS>
1173inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1174 const RHS &R) {
1175 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1176}
1177
1178template <typename LHS, typename RHS>
1179inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1180 const RHS &R) {
1181 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1182}
1183
1184template <typename LHS, typename RHS>
1185inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1186 const RHS &R) {
1187 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1188}
1189
1190template <typename LHS, typename RHS>
1191inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1192 const RHS &R) {
1193 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1194}
1195
1196template <typename LHS, typename RHS>
1197inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1198 const RHS &R) {
1199 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1200}
1201
1202template <typename LHS_t, typename RHS_t, unsigned Opcode,
1203 unsigned WrapFlags = 0, bool Commutable = false>
1204struct OverflowingBinaryOp_match {
1205 LHS_t L;
1206 RHS_t R;
1207
1208 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1209 : L(LHS), R(RHS) {}
1210
1211 template <typename OpTy> bool match(OpTy *V) {
1212 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1213 if (Op->getOpcode() != Opcode)
1214 return false;
1215 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1216 !Op->hasNoUnsignedWrap())
1217 return false;
1218 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1219 !Op->hasNoSignedWrap())
1220 return false;
1221 return (L.match(Op->getOperand(0)) && R.match(Op->getOperand(1))) ||
1222 (Commutable && L.match(Op->getOperand(1)) &&
1223 R.match(Op->getOperand(0)));
1224 }
1225 return false;
1226 }
1227};
1228
1229template <typename LHS, typename RHS>
1230inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1231 OverflowingBinaryOperator::NoSignedWrap>
1232m_NSWAdd(const LHS &L, const RHS &R) {
1233 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1234 OverflowingBinaryOperator::NoSignedWrap>(L,
1235 R);
1236}
1237template <typename LHS, typename RHS>
1238inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1239 OverflowingBinaryOperator::NoSignedWrap>
1240m_NSWSub(const LHS &L, const RHS &R) {
1241 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1242 OverflowingBinaryOperator::NoSignedWrap>(L,
1243 R);
1244}
1245template <typename LHS, typename RHS>
1246inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1247 OverflowingBinaryOperator::NoSignedWrap>
1248m_NSWMul(const LHS &L, const RHS &R) {
1249 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1250 OverflowingBinaryOperator::NoSignedWrap>(L,
1251 R);
1252}
1253template <typename LHS, typename RHS>
1254inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1255 OverflowingBinaryOperator::NoSignedWrap>
1256m_NSWShl(const LHS &L, const RHS &R) {
1257 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1258 OverflowingBinaryOperator::NoSignedWrap>(L,
1259 R);
1260}
1261
1262template <typename LHS, typename RHS>
1263inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1264 OverflowingBinaryOperator::NoUnsignedWrap>
1265m_NUWAdd(const LHS &L, const RHS &R) {
1266 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1267 OverflowingBinaryOperator::NoUnsignedWrap>(
1268 L, R);
1269}
1270
1271template <typename LHS, typename RHS>
1272inline OverflowingBinaryOp_match<
1273 LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true>
1274m_c_NUWAdd(const LHS &L, const RHS &R) {
1275 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1276 OverflowingBinaryOperator::NoUnsignedWrap,
1277 true>(L, R);
1278}
1279
1280template <typename LHS, typename RHS>
1281inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1282 OverflowingBinaryOperator::NoUnsignedWrap>
1283m_NUWSub(const LHS &L, const RHS &R) {
1284 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1285 OverflowingBinaryOperator::NoUnsignedWrap>(
1286 L, R);
1287}
1288template <typename LHS, typename RHS>
1289inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1290 OverflowingBinaryOperator::NoUnsignedWrap>
1291m_NUWMul(const LHS &L, const RHS &R) {
1292 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1293 OverflowingBinaryOperator::NoUnsignedWrap>(
1294 L, R);
1295}
1296template <typename LHS, typename RHS>
1297inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1298 OverflowingBinaryOperator::NoUnsignedWrap>
1299m_NUWShl(const LHS &L, const RHS &R) {
1300 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1301 OverflowingBinaryOperator::NoUnsignedWrap>(
1302 L, R);
1303}
1304
1305template <typename LHS_t, typename RHS_t, bool Commutable = false>
1306struct SpecificBinaryOp_match
1307 : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1308 unsigned Opcode;
1309
1310 SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
1311 : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1312
1313 template <typename OpTy> bool match(OpTy *V) {
1314 return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
1315 }
1316};
1317
1318/// Matches a specific opcode.
1319template <typename LHS, typename RHS>
1320inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1321 const RHS &R) {
1322 return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1323}
1324
1325template <typename LHS, typename RHS, bool Commutable = false>
1326struct DisjointOr_match {
1327 LHS L;
1328 RHS R;
1329
1330 DisjointOr_match(const LHS &L, const RHS &R) : L(L), R(R) {}
1331
1332 template <typename OpTy> bool match(OpTy *V) {
1333 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1334 assert(PDI->getOpcode() == Instruction::Or && "Only or can be disjoint");
1335 if (!PDI->isDisjoint())
1336 return false;
1337 return (L.match(PDI->getOperand(0)) && R.match(PDI->getOperand(1))) ||
1338 (Commutable && L.match(PDI->getOperand(1)) &&
1339 R.match(PDI->getOperand(0)));
1340 }
1341 return false;
1342 }
1343};
1344
1345template <typename LHS, typename RHS>
1346inline DisjointOr_match<LHS, RHS> m_DisjointOr(const LHS &L, const RHS &R) {
1347 return DisjointOr_match<LHS, RHS>(L, R);
1348}
1349
1350template <typename LHS, typename RHS>
1351inline DisjointOr_match<LHS, RHS, true> m_c_DisjointOr(const LHS &L,
1352 const RHS &R) {
1353 return DisjointOr_match<LHS, RHS, true>(L, R);
1354}
1355
1356/// Match either "add" or "or disjoint".
1357template <typename LHS, typename RHS>
1358inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Add>,
1359 DisjointOr_match<LHS, RHS>>
1360m_AddLike(const LHS &L, const RHS &R) {
1361 return m_CombineOr(m_Add(L, R), m_DisjointOr(L, R));
1362}
1363
1364/// Match either "add nsw" or "or disjoint"
1365template <typename LHS, typename RHS>
1366inline match_combine_or<
1367 OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1368 OverflowingBinaryOperator::NoSignedWrap>,
1369 DisjointOr_match<LHS, RHS>>
1370m_NSWAddLike(const LHS &L, const RHS &R) {
1371 return m_CombineOr(m_NSWAdd(L, R), m_DisjointOr(L, R));
1372}
1373
1374/// Match either "add nuw" or "or disjoint"
1375template <typename LHS, typename RHS>
1376inline match_combine_or<
1377 OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1378 OverflowingBinaryOperator::NoUnsignedWrap>,
1379 DisjointOr_match<LHS, RHS>>
1380m_NUWAddLike(const LHS &L, const RHS &R) {
1381 return m_CombineOr(m_NUWAdd(L, R), m_DisjointOr(L, R));
1382}
1383
1384//===----------------------------------------------------------------------===//
1385// Class that matches a group of binary opcodes.
1386//
1387template <typename LHS_t, typename RHS_t, typename Predicate,
1388 bool Commutable = false>
1389struct BinOpPred_match : Predicate {
1390 LHS_t L;
1391 RHS_t R;
1392
1393 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1394
1395 template <typename OpTy> bool match(OpTy *V) {
1396 if (auto *I = dyn_cast<Instruction>(V))
1397 return this->isOpType(I->getOpcode()) &&
1398 ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1399 (Commutable && L.match(I->getOperand(1)) &&
1400 R.match(I->getOperand(0))));
1401 return false;
1402 }
1403};
1404
1405struct is_shift_op {
1406 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1407};
1408
1409struct is_right_shift_op {
1410 bool isOpType(unsigned Opcode) {
1411 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1412 }
1413};
1414
1415struct is_logical_shift_op {
1416 bool isOpType(unsigned Opcode) {
1417 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1418 }
1419};
1420
1421struct is_bitwiselogic_op {
1422 bool isOpType(unsigned Opcode) {
1423 return Instruction::isBitwiseLogicOp(Opcode);
1424 }
1425};
1426
1427struct is_idiv_op {
1428 bool isOpType(unsigned Opcode) {
1429 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1430 }
1431};
1432
1433struct is_irem_op {
1434 bool isOpType(unsigned Opcode) {
1435 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1436 }
1437};
1438
1439/// Matches shift operations.
1440template <typename LHS, typename RHS>
1441inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1442 const RHS &R) {
1443 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1444}
1445
1446/// Matches logical shift operations.
1447template <typename LHS, typename RHS>
1448inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1449 const RHS &R) {
1450 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1451}
1452
1453/// Matches logical shift operations.
1454template <typename LHS, typename RHS>
1455inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1456m_LogicalShift(const LHS &L, const RHS &R) {
1457 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1458}
1459
1460/// Matches bitwise logic operations.
1461template <typename LHS, typename RHS>
1462inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1463m_BitwiseLogic(const LHS &L, const RHS &R) {
1464 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1465}
1466
1467/// Matches bitwise logic operations in either order.
1468template <typename LHS, typename RHS>
1469inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op, true>
1470m_c_BitwiseLogic(const LHS &L, const RHS &R) {
1471 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op, true>(L, R);
1472}
1473
1474/// Matches integer division operations.
1475template <typename LHS, typename RHS>
1476inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1477 const RHS &R) {
1478 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1479}
1480
1481/// Matches integer remainder operations.
1482template <typename LHS, typename RHS>
1483inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1484 const RHS &R) {
1485 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1486}
1487
1488//===----------------------------------------------------------------------===//
1489// Class that matches exact binary ops.
1490//
1491template <typename SubPattern_t> struct Exact_match {
1492 SubPattern_t SubPattern;
1493
1494 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1495
1496 template <typename OpTy> bool match(OpTy *V) {
1497 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1498 return PEO->isExact() && SubPattern.match(V);
1499 return false;
1500 }
1501};
1502
1503template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1504 return SubPattern;
1505}
1506
1507//===----------------------------------------------------------------------===//
1508// Matchers for CmpInst classes
1509//
1510
1511template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1512 bool Commutable = false>
1513struct CmpClass_match {
1514 PredicateTy &Predicate;
1515 LHS_t L;
1516 RHS_t R;
1517
1518 // The evaluation order is always stable, regardless of Commutability.
1519 // The LHS is always matched first.
1520 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1521 : Predicate(Pred), L(LHS), R(RHS) {}
1522
1523 template <typename OpTy> bool match(OpTy *V) {
1524 if (auto *I = dyn_cast<Class>(V)) {
1525 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1526 Predicate = I->getPredicate();
1527 return true;
1528 } else if (Commutable && L.match(I->getOperand(1)) &&
1529 R.match(I->getOperand(0))) {
1530 Predicate = I->getSwappedPredicate();
1531 return true;
1532 }
1533 }
1534 return false;
1535 }
1536};
1537
1538template <typename LHS, typename RHS>
1539inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1540m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1541 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1542}
1543
1544template <typename LHS, typename RHS>
1545inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1546m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1547 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1548}
1549
1550template <typename LHS, typename RHS>
1551inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1552m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1553 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1554}
1555
1556//===----------------------------------------------------------------------===//
1557// Matchers for instructions with a given opcode and number of operands.
1558//
1559
1560/// Matches instructions with Opcode and three operands.
1561template <typename T0, unsigned Opcode> struct OneOps_match {
1562 T0 Op1;
1563
1564 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1565
1566 template <typename OpTy> bool match(OpTy *V) {
1567 if (V->getValueID() == Value::InstructionVal + Opcode) {
1568 auto *I = cast<Instruction>(V);
1569 return Op1.match(I->getOperand(0));
1570 }
1571 return false;
1572 }
1573};
1574
1575/// Matches instructions with Opcode and three operands.
1576template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1577 T0 Op1;
1578 T1 Op2;
1579
1580 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1581
1582 template <typename OpTy> bool match(OpTy *V) {
1583 if (V->getValueID() == Value::InstructionVal + Opcode) {
1584 auto *I = cast<Instruction>(V);
1585 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1586 }
1587 return false;
1588 }
1589};
1590
1591/// Matches instructions with Opcode and three operands.
1592template <typename T0, typename T1, typename T2, unsigned Opcode>
1593struct ThreeOps_match {
1594 T0 Op1;
1595 T1 Op2;
1596 T2 Op3;
1597
1598 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1599 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1600
1601 template <typename OpTy> bool match(OpTy *V) {
1602 if (V->getValueID() == Value::InstructionVal + Opcode) {
1603 auto *I = cast<Instruction>(V);
1604 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1605 Op3.match(I->getOperand(2));
1606 }
1607 return false;
1608 }
1609};
1610
1611/// Matches instructions with Opcode and any number of operands
1612template <unsigned Opcode, typename... OperandTypes> struct AnyOps_match {
1613 std::tuple<OperandTypes...> Operands;
1614
1615 AnyOps_match(const OperandTypes &...Ops) : Operands(Ops...) {}
1616
1617 // Operand matching works by recursively calling match_operands, matching the
1618 // operands left to right. The first version is called for each operand but
1619 // the last, for which the second version is called. The second version of
1620 // match_operands is also used to match each individual operand.
1621 template <int Idx, int Last>
1622 std::enable_if_t<Idx != Last, bool> match_operands(const Instruction *I) {
1623 return match_operands<Idx, Idx>(I) && match_operands<Idx + 1, Last>(I);
1624 }
1625
1626 template <int Idx, int Last>
1627 std::enable_if_t<Idx == Last, bool> match_operands(const Instruction *I) {
1628 return std::get<Idx>(Operands).match(I->getOperand(i: Idx));
1629 }
1630
1631 template <typename OpTy> bool match(OpTy *V) {
1632 if (V->getValueID() == Value::InstructionVal + Opcode) {
1633 auto *I = cast<Instruction>(V);
1634 return I->getNumOperands() == sizeof...(OperandTypes) &&
1635 match_operands<0, sizeof...(OperandTypes) - 1>(I);
1636 }
1637 return false;
1638 }
1639};
1640
1641/// Matches SelectInst.
1642template <typename Cond, typename LHS, typename RHS>
1643inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1644m_Select(const Cond &C, const LHS &L, const RHS &R) {
1645 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1646}
1647
1648/// This matches a select of two constants, e.g.:
1649/// m_SelectCst<-1, 0>(m_Value(V))
1650template <int64_t L, int64_t R, typename Cond>
1651inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1652 Instruction::Select>
1653m_SelectCst(const Cond &C) {
1654 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1655}
1656
1657/// Matches FreezeInst.
1658template <typename OpTy>
1659inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1660 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1661}
1662
1663/// Matches InsertElementInst.
1664template <typename Val_t, typename Elt_t, typename Idx_t>
1665inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1666m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1667 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1668 Val, Elt, Idx);
1669}
1670
1671/// Matches ExtractElementInst.
1672template <typename Val_t, typename Idx_t>
1673inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1674m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1675 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1676}
1677
1678/// Matches shuffle.
1679template <typename T0, typename T1, typename T2> struct Shuffle_match {
1680 T0 Op1;
1681 T1 Op2;
1682 T2 Mask;
1683
1684 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1685 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1686
1687 template <typename OpTy> bool match(OpTy *V) {
1688 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1689 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1690 Mask.match(I->getShuffleMask());
1691 }
1692 return false;
1693 }
1694};
1695
1696struct m_Mask {
1697 ArrayRef<int> &MaskRef;
1698 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1699 bool match(ArrayRef<int> Mask) {
1700 MaskRef = Mask;
1701 return true;
1702 }
1703};
1704
1705struct m_ZeroMask {
1706 bool match(ArrayRef<int> Mask) {
1707 return all_of(Range&: Mask, P: [](int Elem) { return Elem == 0 || Elem == -1; });
1708 }
1709};
1710
1711struct m_SpecificMask {
1712 ArrayRef<int> &MaskRef;
1713 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1714 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1715};
1716
1717struct m_SplatOrPoisonMask {
1718 int &SplatIndex;
1719 m_SplatOrPoisonMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1720 bool match(ArrayRef<int> Mask) {
1721 const auto *First = find_if(Range&: Mask, P: [](int Elem) { return Elem != -1; });
1722 if (First == Mask.end())
1723 return false;
1724 SplatIndex = *First;
1725 return all_of(Range&: Mask,
1726 P: [First](int Elem) { return Elem == *First || Elem == -1; });
1727 }
1728};
1729
1730template <typename PointerOpTy, typename OffsetOpTy> struct PtrAdd_match {
1731 PointerOpTy PointerOp;
1732 OffsetOpTy OffsetOp;
1733
1734 PtrAdd_match(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
1735 : PointerOp(PointerOp), OffsetOp(OffsetOp) {}
1736
1737 template <typename OpTy> bool match(OpTy *V) {
1738 auto *GEP = dyn_cast<GEPOperator>(V);
1739 return GEP && GEP->getSourceElementType()->isIntegerTy(8) &&
1740 PointerOp.match(GEP->getPointerOperand()) &&
1741 OffsetOp.match(GEP->idx_begin()->get());
1742 }
1743};
1744
1745/// Matches ShuffleVectorInst independently of mask value.
1746template <typename V1_t, typename V2_t>
1747inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1748m_Shuffle(const V1_t &v1, const V2_t &v2) {
1749 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1750}
1751
1752template <typename V1_t, typename V2_t, typename Mask_t>
1753inline Shuffle_match<V1_t, V2_t, Mask_t>
1754m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1755 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1756}
1757
1758/// Matches LoadInst.
1759template <typename OpTy>
1760inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1761 return OneOps_match<OpTy, Instruction::Load>(Op);
1762}
1763
1764/// Matches StoreInst.
1765template <typename ValueOpTy, typename PointerOpTy>
1766inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1767m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1768 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1769 PointerOp);
1770}
1771
1772/// Matches GetElementPtrInst.
1773template <typename... OperandTypes>
1774inline auto m_GEP(const OperandTypes &...Ops) {
1775 return AnyOps_match<Instruction::GetElementPtr, OperandTypes...>(Ops...);
1776}
1777
1778/// Matches GEP with i8 source element type
1779template <typename PointerOpTy, typename OffsetOpTy>
1780inline PtrAdd_match<PointerOpTy, OffsetOpTy>
1781m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp) {
1782 return PtrAdd_match<PointerOpTy, OffsetOpTy>(PointerOp, OffsetOp);
1783}
1784
1785//===----------------------------------------------------------------------===//
1786// Matchers for CastInst classes
1787//
1788
1789template <typename Op_t, unsigned Opcode> struct CastOperator_match {
1790 Op_t Op;
1791
1792 CastOperator_match(const Op_t &OpMatch) : Op(OpMatch) {}
1793
1794 template <typename OpTy> bool match(OpTy *V) {
1795 if (auto *O = dyn_cast<Operator>(V))
1796 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1797 return false;
1798 }
1799};
1800
1801template <typename Op_t, typename Class> struct CastInst_match {
1802 Op_t Op;
1803
1804 CastInst_match(const Op_t &OpMatch) : Op(OpMatch) {}
1805
1806 template <typename OpTy> bool match(OpTy *V) {
1807 if (auto *I = dyn_cast<Class>(V))
1808 return Op.match(I->getOperand(0));
1809 return false;
1810 }
1811};
1812
1813template <typename Op_t> struct PtrToIntSameSize_match {
1814 const DataLayout &DL;
1815 Op_t Op;
1816
1817 PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch)
1818 : DL(DL), Op(OpMatch) {}
1819
1820 template <typename OpTy> bool match(OpTy *V) {
1821 if (auto *O = dyn_cast<Operator>(V))
1822 return O->getOpcode() == Instruction::PtrToInt &&
1823 DL.getTypeSizeInBits(Ty: O->getType()) ==
1824 DL.getTypeSizeInBits(Ty: O->getOperand(0)->getType()) &&
1825 Op.match(O->getOperand(0));
1826 return false;
1827 }
1828};
1829
1830template <typename Op_t> struct NNegZExt_match {
1831 Op_t Op;
1832
1833 NNegZExt_match(const Op_t &OpMatch) : Op(OpMatch) {}
1834
1835 template <typename OpTy> bool match(OpTy *V) {
1836 if (auto *I = dyn_cast<ZExtInst>(V))
1837 return I->hasNonNeg() && Op.match(I->getOperand(0));
1838 return false;
1839 }
1840};
1841
1842/// Matches BitCast.
1843template <typename OpTy>
1844inline CastOperator_match<OpTy, Instruction::BitCast>
1845m_BitCast(const OpTy &Op) {
1846 return CastOperator_match<OpTy, Instruction::BitCast>(Op);
1847}
1848
1849template <typename Op_t> struct ElementWiseBitCast_match {
1850 Op_t Op;
1851
1852 ElementWiseBitCast_match(const Op_t &OpMatch) : Op(OpMatch) {}
1853
1854 template <typename OpTy> bool match(OpTy *V) {
1855 BitCastInst *I = dyn_cast<BitCastInst>(V);
1856 if (!I)
1857 return false;
1858 Type *SrcType = I->getSrcTy();
1859 Type *DstType = I->getType();
1860 // Make sure the bitcast doesn't change between scalar and vector and
1861 // doesn't change the number of vector elements.
1862 if (SrcType->isVectorTy() != DstType->isVectorTy())
1863 return false;
1864 if (VectorType *SrcVecTy = dyn_cast<VectorType>(Val: SrcType);
1865 SrcVecTy && SrcVecTy->getElementCount() !=
1866 cast<VectorType>(Val: DstType)->getElementCount())
1867 return false;
1868 return Op.match(I->getOperand(i_nocapture: 0));
1869 }
1870};
1871
1872template <typename OpTy>
1873inline ElementWiseBitCast_match<OpTy> m_ElementWiseBitCast(const OpTy &Op) {
1874 return ElementWiseBitCast_match<OpTy>(Op);
1875}
1876
1877/// Matches PtrToInt.
1878template <typename OpTy>
1879inline CastOperator_match<OpTy, Instruction::PtrToInt>
1880m_PtrToInt(const OpTy &Op) {
1881 return CastOperator_match<OpTy, Instruction::PtrToInt>(Op);
1882}
1883
1884template <typename OpTy>
1885inline PtrToIntSameSize_match<OpTy> m_PtrToIntSameSize(const DataLayout &DL,
1886 const OpTy &Op) {
1887 return PtrToIntSameSize_match<OpTy>(DL, Op);
1888}
1889
1890/// Matches IntToPtr.
1891template <typename OpTy>
1892inline CastOperator_match<OpTy, Instruction::IntToPtr>
1893m_IntToPtr(const OpTy &Op) {
1894 return CastOperator_match<OpTy, Instruction::IntToPtr>(Op);
1895}
1896
1897/// Matches Trunc.
1898template <typename OpTy>
1899inline CastOperator_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1900 return CastOperator_match<OpTy, Instruction::Trunc>(Op);
1901}
1902
1903template <typename OpTy>
1904inline match_combine_or<CastOperator_match<OpTy, Instruction::Trunc>, OpTy>
1905m_TruncOrSelf(const OpTy &Op) {
1906 return m_CombineOr(m_Trunc(Op), Op);
1907}
1908
1909/// Matches SExt.
1910template <typename OpTy>
1911inline CastInst_match<OpTy, SExtInst> m_SExt(const OpTy &Op) {
1912 return CastInst_match<OpTy, SExtInst>(Op);
1913}
1914
1915/// Matches ZExt.
1916template <typename OpTy>
1917inline CastInst_match<OpTy, ZExtInst> m_ZExt(const OpTy &Op) {
1918 return CastInst_match<OpTy, ZExtInst>(Op);
1919}
1920
1921template <typename OpTy>
1922inline NNegZExt_match<OpTy> m_NNegZExt(const OpTy &Op) {
1923 return NNegZExt_match<OpTy>(Op);
1924}
1925
1926template <typename OpTy>
1927inline match_combine_or<CastInst_match<OpTy, ZExtInst>, OpTy>
1928m_ZExtOrSelf(const OpTy &Op) {
1929 return m_CombineOr(m_ZExt(Op), Op);
1930}
1931
1932template <typename OpTy>
1933inline match_combine_or<CastInst_match<OpTy, SExtInst>, OpTy>
1934m_SExtOrSelf(const OpTy &Op) {
1935 return m_CombineOr(m_SExt(Op), Op);
1936}
1937
1938/// Match either "sext" or "zext nneg".
1939template <typename OpTy>
1940inline match_combine_or<CastInst_match<OpTy, SExtInst>, NNegZExt_match<OpTy>>
1941m_SExtLike(const OpTy &Op) {
1942 return m_CombineOr(m_SExt(Op), m_NNegZExt(Op));
1943}
1944
1945template <typename OpTy>
1946inline match_combine_or<CastInst_match<OpTy, ZExtInst>,
1947 CastInst_match<OpTy, SExtInst>>
1948m_ZExtOrSExt(const OpTy &Op) {
1949 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1950}
1951
1952template <typename OpTy>
1953inline match_combine_or<match_combine_or<CastInst_match<OpTy, ZExtInst>,
1954 CastInst_match<OpTy, SExtInst>>,
1955 OpTy>
1956m_ZExtOrSExtOrSelf(const OpTy &Op) {
1957 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1958}
1959
1960template <typename OpTy>
1961inline CastInst_match<OpTy, UIToFPInst> m_UIToFP(const OpTy &Op) {
1962 return CastInst_match<OpTy, UIToFPInst>(Op);
1963}
1964
1965template <typename OpTy>
1966inline CastInst_match<OpTy, SIToFPInst> m_SIToFP(const OpTy &Op) {
1967 return CastInst_match<OpTy, SIToFPInst>(Op);
1968}
1969
1970template <typename OpTy>
1971inline CastInst_match<OpTy, FPToUIInst> m_FPToUI(const OpTy &Op) {
1972 return CastInst_match<OpTy, FPToUIInst>(Op);
1973}
1974
1975template <typename OpTy>
1976inline CastInst_match<OpTy, FPToSIInst> m_FPToSI(const OpTy &Op) {
1977 return CastInst_match<OpTy, FPToSIInst>(Op);
1978}
1979
1980template <typename OpTy>
1981inline CastInst_match<OpTy, FPTruncInst> m_FPTrunc(const OpTy &Op) {
1982 return CastInst_match<OpTy, FPTruncInst>(Op);
1983}
1984
1985template <typename OpTy>
1986inline CastInst_match<OpTy, FPExtInst> m_FPExt(const OpTy &Op) {
1987 return CastInst_match<OpTy, FPExtInst>(Op);
1988}
1989
1990//===----------------------------------------------------------------------===//
1991// Matchers for control flow.
1992//
1993
1994struct br_match {
1995 BasicBlock *&Succ;
1996
1997 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1998
1999 template <typename OpTy> bool match(OpTy *V) {
2000 if (auto *BI = dyn_cast<BranchInst>(V))
2001 if (BI->isUnconditional()) {
2002 Succ = BI->getSuccessor(0);
2003 return true;
2004 }
2005 return false;
2006 }
2007};
2008
2009inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
2010
2011template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
2012struct brc_match {
2013 Cond_t Cond;
2014 TrueBlock_t T;
2015 FalseBlock_t F;
2016
2017 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
2018 : Cond(C), T(t), F(f) {}
2019
2020 template <typename OpTy> bool match(OpTy *V) {
2021 if (auto *BI = dyn_cast<BranchInst>(V))
2022 if (BI->isConditional() && Cond.match(BI->getCondition()))
2023 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
2024 return false;
2025 }
2026};
2027
2028template <typename Cond_t>
2029inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
2030m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
2031 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
2032 C, m_BasicBlock(V&: T), m_BasicBlock(V&: F));
2033}
2034
2035template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
2036inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
2037m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
2038 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
2039}
2040
2041//===----------------------------------------------------------------------===//
2042// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
2043//
2044
2045template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
2046 bool Commutable = false>
2047struct MaxMin_match {
2048 using PredType = Pred_t;
2049 LHS_t L;
2050 RHS_t R;
2051
2052 // The evaluation order is always stable, regardless of Commutability.
2053 // The LHS is always matched first.
2054 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
2055
2056 template <typename OpTy> bool match(OpTy *V) {
2057 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
2058 Intrinsic::ID IID = II->getIntrinsicID();
2059 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
2060 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
2061 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
2062 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
2063 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
2064 return (L.match(LHS) && R.match(RHS)) ||
2065 (Commutable && L.match(RHS) && R.match(LHS));
2066 }
2067 }
2068 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
2069 auto *SI = dyn_cast<SelectInst>(V);
2070 if (!SI)
2071 return false;
2072 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
2073 if (!Cmp)
2074 return false;
2075 // At this point we have a select conditioned on a comparison. Check that
2076 // it is the values returned by the select that are being compared.
2077 auto *TrueVal = SI->getTrueValue();
2078 auto *FalseVal = SI->getFalseValue();
2079 auto *LHS = Cmp->getOperand(0);
2080 auto *RHS = Cmp->getOperand(1);
2081 if ((TrueVal != LHS || FalseVal != RHS) &&
2082 (TrueVal != RHS || FalseVal != LHS))
2083 return false;
2084 typename CmpInst_t::Predicate Pred =
2085 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
2086 // Does "(x pred y) ? x : y" represent the desired max/min operation?
2087 if (!Pred_t::match(Pred))
2088 return false;
2089 // It does! Bind the operands.
2090 return (L.match(LHS) && R.match(RHS)) ||
2091 (Commutable && L.match(RHS) && R.match(LHS));
2092 }
2093};
2094
2095/// Helper class for identifying signed max predicates.
2096struct smax_pred_ty {
2097 static bool match(ICmpInst::Predicate Pred) {
2098 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
2099 }
2100};
2101
2102/// Helper class for identifying signed min predicates.
2103struct smin_pred_ty {
2104 static bool match(ICmpInst::Predicate Pred) {
2105 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
2106 }
2107};
2108
2109/// Helper class for identifying unsigned max predicates.
2110struct umax_pred_ty {
2111 static bool match(ICmpInst::Predicate Pred) {
2112 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
2113 }
2114};
2115
2116/// Helper class for identifying unsigned min predicates.
2117struct umin_pred_ty {
2118 static bool match(ICmpInst::Predicate Pred) {
2119 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
2120 }
2121};
2122
2123/// Helper class for identifying ordered max predicates.
2124struct ofmax_pred_ty {
2125 static bool match(FCmpInst::Predicate Pred) {
2126 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
2127 }
2128};
2129
2130/// Helper class for identifying ordered min predicates.
2131struct ofmin_pred_ty {
2132 static bool match(FCmpInst::Predicate Pred) {
2133 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
2134 }
2135};
2136
2137/// Helper class for identifying unordered max predicates.
2138struct ufmax_pred_ty {
2139 static bool match(FCmpInst::Predicate Pred) {
2140 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
2141 }
2142};
2143
2144/// Helper class for identifying unordered min predicates.
2145struct ufmin_pred_ty {
2146 static bool match(FCmpInst::Predicate Pred) {
2147 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
2148 }
2149};
2150
2151template <typename LHS, typename RHS>
2152inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
2153 const RHS &R) {
2154 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
2155}
2156
2157template <typename LHS, typename RHS>
2158inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
2159 const RHS &R) {
2160 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
2161}
2162
2163template <typename LHS, typename RHS>
2164inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
2165 const RHS &R) {
2166 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
2167}
2168
2169template <typename LHS, typename RHS>
2170inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
2171 const RHS &R) {
2172 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
2173}
2174
2175template <typename LHS, typename RHS>
2176inline match_combine_or<
2177 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
2178 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
2179 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
2180 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
2181m_MaxOrMin(const LHS &L, const RHS &R) {
2182 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
2183 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
2184}
2185
2186/// Match an 'ordered' floating point maximum function.
2187/// Floating point has one special value 'NaN'. Therefore, there is no total
2188/// order. However, if we can ignore the 'NaN' value (for example, because of a
2189/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
2190/// semantics. In the presence of 'NaN' we have to preserve the original
2191/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
2192///
2193/// max(L, R) iff L and R are not NaN
2194/// m_OrdFMax(L, R) = R iff L or R are NaN
2195template <typename LHS, typename RHS>
2196inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
2197 const RHS &R) {
2198 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
2199}
2200
2201/// Match an 'ordered' floating point minimum function.
2202/// Floating point has one special value 'NaN'. Therefore, there is no total
2203/// order. However, if we can ignore the 'NaN' value (for example, because of a
2204/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2205/// semantics. In the presence of 'NaN' we have to preserve the original
2206/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
2207///
2208/// min(L, R) iff L and R are not NaN
2209/// m_OrdFMin(L, R) = R iff L or R are NaN
2210template <typename LHS, typename RHS>
2211inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
2212 const RHS &R) {
2213 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
2214}
2215
2216/// Match an 'unordered' floating point maximum function.
2217/// Floating point has one special value 'NaN'. Therefore, there is no total
2218/// order. However, if we can ignore the 'NaN' value (for example, because of a
2219/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
2220/// semantics. In the presence of 'NaN' we have to preserve the original
2221/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
2222///
2223/// max(L, R) iff L and R are not NaN
2224/// m_UnordFMax(L, R) = L iff L or R are NaN
2225template <typename LHS, typename RHS>
2226inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
2227m_UnordFMax(const LHS &L, const RHS &R) {
2228 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
2229}
2230
2231/// Match an 'unordered' floating point minimum function.
2232/// Floating point has one special value 'NaN'. Therefore, there is no total
2233/// order. However, if we can ignore the 'NaN' value (for example, because of a
2234/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2235/// semantics. In the presence of 'NaN' we have to preserve the original
2236/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
2237///
2238/// min(L, R) iff L and R are not NaN
2239/// m_UnordFMin(L, R) = L iff L or R are NaN
2240template <typename LHS, typename RHS>
2241inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
2242m_UnordFMin(const LHS &L, const RHS &R) {
2243 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
2244}
2245
2246//===----------------------------------------------------------------------===//
2247// Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
2248// Note that S might be matched to other instructions than AddInst.
2249//
2250
2251template <typename LHS_t, typename RHS_t, typename Sum_t>
2252struct UAddWithOverflow_match {
2253 LHS_t L;
2254 RHS_t R;
2255 Sum_t S;
2256
2257 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
2258 : L(L), R(R), S(S) {}
2259
2260 template <typename OpTy> bool match(OpTy *V) {
2261 Value *ICmpLHS, *ICmpRHS;
2262 ICmpInst::Predicate Pred;
2263 if (!m_ICmp(Pred, L: m_Value(V&: ICmpLHS), R: m_Value(V&: ICmpRHS)).match(V))
2264 return false;
2265
2266 Value *AddLHS, *AddRHS;
2267 auto AddExpr = m_Add(L: m_Value(V&: AddLHS), R: m_Value(V&: AddRHS));
2268
2269 // (a + b) u< a, (a + b) u< b
2270 if (Pred == ICmpInst::ICMP_ULT)
2271 if (AddExpr.match(V: ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
2272 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2273
2274 // a >u (a + b), b >u (a + b)
2275 if (Pred == ICmpInst::ICMP_UGT)
2276 if (AddExpr.match(V: ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
2277 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2278
2279 Value *Op1;
2280 auto XorExpr = m_OneUse(SubPattern: m_Xor(L: m_Value(V&: Op1), R: m_AllOnes()));
2281 // (a ^ -1) <u b
2282 if (Pred == ICmpInst::ICMP_ULT) {
2283 if (XorExpr.match(V: ICmpLHS))
2284 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
2285 }
2286 // b > u (a ^ -1)
2287 if (Pred == ICmpInst::ICMP_UGT) {
2288 if (XorExpr.match(V: ICmpRHS))
2289 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
2290 }
2291
2292 // Match special-case for increment-by-1.
2293 if (Pred == ICmpInst::ICMP_EQ) {
2294 // (a + 1) == 0
2295 // (1 + a) == 0
2296 if (AddExpr.match(V: ICmpLHS) && m_ZeroInt().match(V: ICmpRHS) &&
2297 (m_One().match(V: AddLHS) || m_One().match(V: AddRHS)))
2298 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2299 // 0 == (a + 1)
2300 // 0 == (1 + a)
2301 if (m_ZeroInt().match(V: ICmpLHS) && AddExpr.match(V: ICmpRHS) &&
2302 (m_One().match(V: AddLHS) || m_One().match(V: AddRHS)))
2303 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2304 }
2305
2306 return false;
2307 }
2308};
2309
2310/// Match an icmp instruction checking for unsigned overflow on addition.
2311///
2312/// S is matched to the addition whose result is being checked for overflow, and
2313/// L and R are matched to the LHS and RHS of S.
2314template <typename LHS_t, typename RHS_t, typename Sum_t>
2315UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
2316m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2317 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2318}
2319
2320template <typename Opnd_t> struct Argument_match {
2321 unsigned OpI;
2322 Opnd_t Val;
2323
2324 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2325
2326 template <typename OpTy> bool match(OpTy *V) {
2327 // FIXME: Should likely be switched to use `CallBase`.
2328 if (const auto *CI = dyn_cast<CallInst>(V))
2329 return Val.match(CI->getArgOperand(OpI));
2330 return false;
2331 }
2332};
2333
2334/// Match an argument.
2335template <unsigned OpI, typename Opnd_t>
2336inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2337 return Argument_match<Opnd_t>(OpI, Op);
2338}
2339
2340/// Intrinsic matchers.
2341struct IntrinsicID_match {
2342 unsigned ID;
2343
2344 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2345
2346 template <typename OpTy> bool match(OpTy *V) {
2347 if (const auto *CI = dyn_cast<CallInst>(V))
2348 if (const auto *F = CI->getCalledFunction())
2349 return F->getIntrinsicID() == ID;
2350 return false;
2351 }
2352};
2353
2354/// Intrinsic matches are combinations of ID matchers, and argument
2355/// matchers. Higher arity matcher are defined recursively in terms of and-ing
2356/// them with lower arity matchers. Here's some convenient typedefs for up to
2357/// several arguments, and more can be added as needed
2358template <typename T0 = void, typename T1 = void, typename T2 = void,
2359 typename T3 = void, typename T4 = void, typename T5 = void,
2360 typename T6 = void, typename T7 = void, typename T8 = void,
2361 typename T9 = void, typename T10 = void>
2362struct m_Intrinsic_Ty;
2363template <typename T0> struct m_Intrinsic_Ty<T0> {
2364 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2365};
2366template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2367 using Ty =
2368 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2369};
2370template <typename T0, typename T1, typename T2>
2371struct m_Intrinsic_Ty<T0, T1, T2> {
2372 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2373 Argument_match<T2>>;
2374};
2375template <typename T0, typename T1, typename T2, typename T3>
2376struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2377 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2378 Argument_match<T3>>;
2379};
2380
2381template <typename T0, typename T1, typename T2, typename T3, typename T4>
2382struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2383 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2384 Argument_match<T4>>;
2385};
2386
2387template <typename T0, typename T1, typename T2, typename T3, typename T4,
2388 typename T5>
2389struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2390 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2391 Argument_match<T5>>;
2392};
2393
2394/// Match intrinsic calls like this:
2395/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2396template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2397 return IntrinsicID_match(IntrID);
2398}
2399
2400/// Matches MaskedLoad Intrinsic.
2401template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2402inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2403m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2404 const Opnd3 &Op3) {
2405 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2406}
2407
2408/// Matches MaskedGather Intrinsic.
2409template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2410inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2411m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2412 const Opnd3 &Op3) {
2413 return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
2414}
2415
2416template <Intrinsic::ID IntrID, typename T0>
2417inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2418 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2419}
2420
2421template <Intrinsic::ID IntrID, typename T0, typename T1>
2422inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2423 const T1 &Op1) {
2424 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2425}
2426
2427template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2428inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2429m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2430 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2431}
2432
2433template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2434 typename T3>
2435inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2436m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2437 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2438}
2439
2440template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2441 typename T3, typename T4>
2442inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2443m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2444 const T4 &Op4) {
2445 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2446 m_Argument<4>(Op4));
2447}
2448
2449template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2450 typename T3, typename T4, typename T5>
2451inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2452m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2453 const T4 &Op4, const T5 &Op5) {
2454 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2455 m_Argument<5>(Op5));
2456}
2457
2458// Helper intrinsic matching specializations.
2459template <typename Opnd0>
2460inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2461 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2462}
2463
2464template <typename Opnd0>
2465inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2466 return m_Intrinsic<Intrinsic::bswap>(Op0);
2467}
2468
2469template <typename Opnd0>
2470inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2471 return m_Intrinsic<Intrinsic::fabs>(Op0);
2472}
2473
2474template <typename Opnd0>
2475inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2476 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2477}
2478
2479template <typename Opnd0, typename Opnd1>
2480inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2481 const Opnd1 &Op1) {
2482 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2483}
2484
2485template <typename Opnd0, typename Opnd1>
2486inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2487 const Opnd1 &Op1) {
2488 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2489}
2490
2491template <typename Opnd0, typename Opnd1, typename Opnd2>
2492inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2493m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2494 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2495}
2496
2497template <typename Opnd0, typename Opnd1, typename Opnd2>
2498inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2499m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2500 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2501}
2502
2503template <typename Opnd0>
2504inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) {
2505 return m_Intrinsic<Intrinsic::sqrt>(Op0);
2506}
2507
2508template <typename Opnd0, typename Opnd1>
2509inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0,
2510 const Opnd1 &Op1) {
2511 return m_Intrinsic<Intrinsic::copysign>(Op0, Op1);
2512}
2513
2514template <typename Opnd0>
2515inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) {
2516 return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0);
2517}
2518
2519//===----------------------------------------------------------------------===//
2520// Matchers for two-operands operators with the operators in either order
2521//
2522
2523/// Matches a BinaryOperator with LHS and RHS in either order.
2524template <typename LHS, typename RHS>
2525inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2526 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2527}
2528
2529/// Matches an ICmp with a predicate over LHS and RHS in either order.
2530/// Swaps the predicate if operands are commuted.
2531template <typename LHS, typename RHS>
2532inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2533m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2534 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2535 R);
2536}
2537
2538/// Matches a specific opcode with LHS and RHS in either order.
2539template <typename LHS, typename RHS>
2540inline SpecificBinaryOp_match<LHS, RHS, true>
2541m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2542 return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2543}
2544
2545/// Matches a Add with LHS and RHS in either order.
2546template <typename LHS, typename RHS>
2547inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2548 const RHS &R) {
2549 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2550}
2551
2552/// Matches a Mul with LHS and RHS in either order.
2553template <typename LHS, typename RHS>
2554inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2555 const RHS &R) {
2556 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2557}
2558
2559/// Matches an And with LHS and RHS in either order.
2560template <typename LHS, typename RHS>
2561inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2562 const RHS &R) {
2563 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2564}
2565
2566/// Matches an Or with LHS and RHS in either order.
2567template <typename LHS, typename RHS>
2568inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2569 const RHS &R) {
2570 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2571}
2572
2573/// Matches an Xor with LHS and RHS in either order.
2574template <typename LHS, typename RHS>
2575inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2576 const RHS &R) {
2577 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2578}
2579
2580/// Matches a 'Neg' as 'sub 0, V'.
2581template <typename ValTy>
2582inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2583m_Neg(const ValTy &V) {
2584 return m_Sub(m_ZeroInt(), V);
2585}
2586
2587/// Matches a 'Neg' as 'sub nsw 0, V'.
2588template <typename ValTy>
2589inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2590 Instruction::Sub,
2591 OverflowingBinaryOperator::NoSignedWrap>
2592m_NSWNeg(const ValTy &V) {
2593 return m_NSWSub(m_ZeroInt(), V);
2594}
2595
2596/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2597/// NOTE: we first match the 'Not' (by matching '-1'),
2598/// and only then match the inner matcher!
2599template <typename ValTy>
2600inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true>
2601m_Not(const ValTy &V) {
2602 return m_c_Xor(m_AllOnes(), V);
2603}
2604
2605template <typename ValTy>
2606inline BinaryOp_match<cst_pred_ty<is_all_ones, false>, ValTy, Instruction::Xor,
2607 true>
2608m_NotForbidPoison(const ValTy &V) {
2609 return m_c_Xor(m_AllOnesForbidPoison(), V);
2610}
2611
2612/// Matches an SMin with LHS and RHS in either order.
2613template <typename LHS, typename RHS>
2614inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2615m_c_SMin(const LHS &L, const RHS &R) {
2616 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2617}
2618/// Matches an SMax with LHS and RHS in either order.
2619template <typename LHS, typename RHS>
2620inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2621m_c_SMax(const LHS &L, const RHS &R) {
2622 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2623}
2624/// Matches a UMin with LHS and RHS in either order.
2625template <typename LHS, typename RHS>
2626inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2627m_c_UMin(const LHS &L, const RHS &R) {
2628 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2629}
2630/// Matches a UMax with LHS and RHS in either order.
2631template <typename LHS, typename RHS>
2632inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2633m_c_UMax(const LHS &L, const RHS &R) {
2634 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2635}
2636
2637template <typename LHS, typename RHS>
2638inline match_combine_or<
2639 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2640 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2641 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2642 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2643m_c_MaxOrMin(const LHS &L, const RHS &R) {
2644 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2645 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2646}
2647
2648template <Intrinsic::ID IntrID, typename T0, typename T1>
2649inline match_combine_or<typename m_Intrinsic_Ty<T0, T1>::Ty,
2650 typename m_Intrinsic_Ty<T1, T0>::Ty>
2651m_c_Intrinsic(const T0 &Op0, const T1 &Op1) {
2652 return m_CombineOr(m_Intrinsic<IntrID>(Op0, Op1),
2653 m_Intrinsic<IntrID>(Op1, Op0));
2654}
2655
2656/// Matches FAdd with LHS and RHS in either order.
2657template <typename LHS, typename RHS>
2658inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2659m_c_FAdd(const LHS &L, const RHS &R) {
2660 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2661}
2662
2663/// Matches FMul with LHS and RHS in either order.
2664template <typename LHS, typename RHS>
2665inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2666m_c_FMul(const LHS &L, const RHS &R) {
2667 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2668}
2669
2670template <typename Opnd_t> struct Signum_match {
2671 Opnd_t Val;
2672 Signum_match(const Opnd_t &V) : Val(V) {}
2673
2674 template <typename OpTy> bool match(OpTy *V) {
2675 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2676 if (TypeSize == 0)
2677 return false;
2678
2679 unsigned ShiftWidth = TypeSize - 1;
2680 Value *OpL = nullptr, *OpR = nullptr;
2681
2682 // This is the representation of signum we match:
2683 //
2684 // signum(x) == (x >> 63) | (-x >>u 63)
2685 //
2686 // An i1 value is its own signum, so it's correct to match
2687 //
2688 // signum(x) == (x >> 0) | (-x >>u 0)
2689 //
2690 // for i1 values.
2691
2692 auto LHS = m_AShr(L: m_Value(V&: OpL), R: m_SpecificInt(V: ShiftWidth));
2693 auto RHS = m_LShr(L: m_Neg(V: m_Value(V&: OpR)), R: m_SpecificInt(V: ShiftWidth));
2694 auto Signum = m_Or(L: LHS, R: RHS);
2695
2696 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2697 }
2698};
2699
2700/// Matches a signum pattern.
2701///
2702/// signum(x) =
2703/// x > 0 -> 1
2704/// x == 0 -> 0
2705/// x < 0 -> -1
2706template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2707 return Signum_match<Val_t>(V);
2708}
2709
2710template <int Ind, typename Opnd_t> struct ExtractValue_match {
2711 Opnd_t Val;
2712 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2713
2714 template <typename OpTy> bool match(OpTy *V) {
2715 if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2716 // If Ind is -1, don't inspect indices
2717 if (Ind != -1 &&
2718 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2719 return false;
2720 return Val.match(I->getAggregateOperand());
2721 }
2722 return false;
2723 }
2724};
2725
2726/// Match a single index ExtractValue instruction.
2727/// For example m_ExtractValue<1>(...)
2728template <int Ind, typename Val_t>
2729inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2730 return ExtractValue_match<Ind, Val_t>(V);
2731}
2732
2733/// Match an ExtractValue instruction with any index.
2734/// For example m_ExtractValue(...)
2735template <typename Val_t>
2736inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2737 return ExtractValue_match<-1, Val_t>(V);
2738}
2739
2740/// Matcher for a single index InsertValue instruction.
2741template <int Ind, typename T0, typename T1> struct InsertValue_match {
2742 T0 Op0;
2743 T1 Op1;
2744
2745 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2746
2747 template <typename OpTy> bool match(OpTy *V) {
2748 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2749 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2750 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2751 }
2752 return false;
2753 }
2754};
2755
2756/// Matches a single index InsertValue instruction.
2757template <int Ind, typename Val_t, typename Elt_t>
2758inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2759 const Elt_t &Elt) {
2760 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2761}
2762
2763/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2764/// the constant expression
2765/// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2766/// under the right conditions determined by DataLayout.
2767struct VScaleVal_match {
2768 template <typename ITy> bool match(ITy *V) {
2769 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2770 return true;
2771
2772 Value *Ptr;
2773 if (m_PtrToInt(Op: m_Value(V&: Ptr)).match(V)) {
2774 if (auto *GEP = dyn_cast<GEPOperator>(Val: Ptr)) {
2775 auto *DerefTy =
2776 dyn_cast<ScalableVectorType>(Val: GEP->getSourceElementType());
2777 if (GEP->getNumIndices() == 1 && DerefTy &&
2778 DerefTy->getElementType()->isIntegerTy(Bitwidth: 8) &&
2779 m_Zero().match(V: GEP->getPointerOperand()) &&
2780 m_SpecificInt(V: 1).match(V: GEP->idx_begin()->get()))
2781 return true;
2782 }
2783 }
2784
2785 return false;
2786 }
2787};
2788
2789inline VScaleVal_match m_VScale() {
2790 return VScaleVal_match();
2791}
2792
2793template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
2794struct LogicalOp_match {
2795 LHS L;
2796 RHS R;
2797
2798 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2799
2800 template <typename T> bool match(T *V) {
2801 auto *I = dyn_cast<Instruction>(V);
2802 if (!I || !I->getType()->isIntOrIntVectorTy(1))
2803 return false;
2804
2805 if (I->getOpcode() == Opcode) {
2806 auto *Op0 = I->getOperand(0);
2807 auto *Op1 = I->getOperand(1);
2808 return (L.match(Op0) && R.match(Op1)) ||
2809 (Commutable && L.match(Op1) && R.match(Op0));
2810 }
2811
2812 if (auto *Select = dyn_cast<SelectInst>(I)) {
2813 auto *Cond = Select->getCondition();
2814 auto *TVal = Select->getTrueValue();
2815 auto *FVal = Select->getFalseValue();
2816
2817 // Don't match a scalar select of bool vectors.
2818 // Transforms expect a single type for operands if this matches.
2819 if (Cond->getType() != Select->getType())
2820 return false;
2821
2822 if (Opcode == Instruction::And) {
2823 auto *C = dyn_cast<Constant>(FVal);
2824 if (C && C->isNullValue())
2825 return (L.match(Cond) && R.match(TVal)) ||
2826 (Commutable && L.match(TVal) && R.match(Cond));
2827 } else {
2828 assert(Opcode == Instruction::Or);
2829 auto *C = dyn_cast<Constant>(TVal);
2830 if (C && C->isOneValue())
2831 return (L.match(Cond) && R.match(FVal)) ||
2832 (Commutable && L.match(FVal) && R.match(Cond));
2833 }
2834 }
2835
2836 return false;
2837 }
2838};
2839
2840/// Matches L && R either in the form of L & R or L ? R : false.
2841/// Note that the latter form is poison-blocking.
2842template <typename LHS, typename RHS>
2843inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L,
2844 const RHS &R) {
2845 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2846}
2847
2848/// Matches L && R where L and R are arbitrary values.
2849inline auto m_LogicalAnd() { return m_LogicalAnd(L: m_Value(), R: m_Value()); }
2850
2851/// Matches L && R with LHS and RHS in either order.
2852template <typename LHS, typename RHS>
2853inline LogicalOp_match<LHS, RHS, Instruction::And, true>
2854m_c_LogicalAnd(const LHS &L, const RHS &R) {
2855 return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
2856}
2857
2858/// Matches L || R either in the form of L | R or L ? true : R.
2859/// Note that the latter form is poison-blocking.
2860template <typename LHS, typename RHS>
2861inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L,
2862 const RHS &R) {
2863 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2864}
2865
2866/// Matches L || R where L and R are arbitrary values.
2867inline auto m_LogicalOr() { return m_LogicalOr(L: m_Value(), R: m_Value()); }
2868
2869/// Matches L || R with LHS and RHS in either order.
2870template <typename LHS, typename RHS>
2871inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
2872m_c_LogicalOr(const LHS &L, const RHS &R) {
2873 return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2874}
2875
2876/// Matches either L && R or L || R,
2877/// either one being in the either binary or logical form.
2878/// Note that the latter form is poison-blocking.
2879template <typename LHS, typename RHS, bool Commutable = false>
2880inline auto m_LogicalOp(const LHS &L, const RHS &R) {
2881 return m_CombineOr(
2882 LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R),
2883 LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R));
2884}
2885
2886/// Matches either L && R or L || R where L and R are arbitrary values.
2887inline auto m_LogicalOp() { return m_LogicalOp(L: m_Value(), R: m_Value()); }
2888
2889/// Matches either L && R or L || R with LHS and RHS in either order.
2890template <typename LHS, typename RHS>
2891inline auto m_c_LogicalOp(const LHS &L, const RHS &R) {
2892 return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R);
2893}
2894
2895} // end namespace PatternMatch
2896} // end namespace llvm
2897
2898#endif // LLVM_IR_PATTERNMATCH_H
2899

source code of llvm/include/llvm/IR/PatternMatch.h